Strong Authentication in the Cloud

Ned Smith
Intel
Agenda

- Cloud use cases
- Private Cloud
- Public Cloud
- Multi-Tenancy
- Identity Management
- Deployment Considerations
- Conclusion
Spectrum of Cloud Hosting Models

Increasing number of options for IT & end-users

A combination of solutions will be required

Intelligent Clients provide flexibility for today & tomorrow
Private Cloud Hosting Model for Client-side Virtual Container

Use Cases
- Private Cloud
- Public Cloud
- Multi-Tenancy
- Identity Mgmt
- Deployment
- Conclusion

IT Experience is Centralized Security & Control

User Experience is Responsiveness, Mobility & Protection

Client Hypervisor

Corporate OS

Personal OS

CMDB

Profile 1
Profile 2
Profile 3

Corporate LAN

Storage

TXT Hardware

Intel Confidential
Private Cloud Attestation

With Intel® TXT:
Software can be measured and verified as known good

- Power on HW
- System FW verified by TXT prior to boot
- Hypervisor code measured by TXT and compared to known good value prior to allowing launch

Launch VMs, OS, etc

- HW
- App
- OS
- Hypervisor
- HW

- FW/BIOS OK? Yes
- Hypervisor OK? Yes
- TXT launch control policy can prevent execution of rootkit hypervisors and BIOS
- TXT can always return the system to a safe operating environment

...and tampering can be detected or blocked

- Rootkit
- BIOS
- HW
- Trusted state
- Un-trusted state

Use Cases
- Private Cloud
- Public Cloud
- Multi-Tenancy
- Identity Mgmt
- Deployment

Conclusion
Public Cloud Hosting Model for Virtual Containers (IaaS)

Use Cases
- Private Cloud
- Public Cloud
- Multi-Tenancy
- Identity Mgmt
- Deployment

Cloud Hosting

Corp Configuration Management

Client

Corp A
- Profile 1
- Profile 2
- Profile 3

CMDB

Corp A
- OS

Client Hypervisor

App 1

Cloud Experience is Consistent Security & Control of Hosting Environment

User Experience is Mobility, Availability, Control of Application Environment
Public Cloud Attestation

With TXT:
Service Provider can verify hosting environment is good

Power on HW
Intel® TXT measures BIOS and SMM

The TXT Authenticated Code Module measures hypervisor and compares to known good value

HYP, SMM, BIOS match?
Yes

Launch VMs, OS, etc

...and Subscriber attestation proves SP environment is acceptable before releasing sensitive data

Hosted app obtains attestation report

Hosted app forwards report to cloud subscriber

Subscriber verifies reported hypervisor satisfies policy

Use Cases
Private Cloud
Public Cloud
Multi-Tenancy
Identity Mgmt
Deployment
Conclusion
Cloud Depends on Multi-Tenancy

- Service providers may have multiple subscribers
- Cloud subscribers may contract with multiple service providers
- “Mutually suspicious” security semantics
- Requires
 - User and service provider authentication
 - Server and client environment attestation
Multi-tenancy for Service Providers

Service Provider needs secure hosting environment for each mutually suspicious user

Users verify SP is trusted to host services through attestation mechanisms
Multi-tenancy for Clients

User needs secure channel for each mutually suspicious service provider

User Presence Mechanisms
- Passwords
- OT Passwords
- Biometrics
- Smartcards

Service providers authenticate client is trusted to subscribe to services using user presence and hardware attestation

Use Cases
Private Cloud
Public Cloud
Multi-Tenancy
Identity Mgmt
Deployment
Conclusion
Today User and Platform Identity Management are Separated

• User Identity Examples
 – Kerberos KDC - tickets
 – Certificate Authority – X.509 certificates
 – Web service / Open ID – password digests

• Platform Identity Examples
 – TCG Privacy CA - AIK certificates
 – TLS – “Machine certs”
 – EPID Mfg CA (more later)
Cloud Models Suggest Integrated Identity Management

- User identity believability improves when coupled with platform identity
- Platform identities are (can be) provisioned at manufacturing time
 - Addresses “step-0” problem
- Common framework for identity management deployment lifecycle
What Makes User Identity Believable?

- User must authenticate reliably
- Identity provider must prove this occurred
- Properties:
 - Hardened attestation module (e.g. TPM)
 - Hardened user authentication module (e.g. HSM)
 - Integration
What about Privacy?

- Integration of user authentication with attestation can impact privacy
- Example:

![Diagram showing user authentication and attestation with keys and service providers.]

SP-A can cooperate with SP-B using transactions involving Key-C

Use Cases
- Private Cloud
- Public Cloud
- Multi-Tenancy
- Identity Mgmt
- Deployment
- Conclusion
Possible Solutions for Privacy Enhanced Platform IDs

- **TCG Attestation Identity Keys (AIK)**
 - For each user identity, use a unique AIK
 - Traditional asymmetric key pair is 1-to-1
 - E.g.
 - User ID A
 - Platform ID A
 - User ID B
 - Platform ID B
 - ...

- **Privacy Enhanced Identifier (EPID)**
 - For each user identity, use the same EPID key
 - EPID is 1-to-many; one public key, many private keys
 - Privacy is enhanced with greater number of private keys
EVID Manufacturing

- A unique private key is assigned to each platform
- A new group is started after several million private keys have been assigned
- Manufacturer CA issues a “group” certificate based on the single public key associated with the group

Privacy is preserved because Service Provider A cannot correlate use of EVID when used with Service Provider B
EPID Certificate Model

- Traditional CA has 2 or 3 tiers
- The root CA public key terminates certificate path validation
- Manufacturing CA issues a “Bridge Cert” allowing path validation beyond traditional root CAs
EPID Revocation

- Traditional PKI use a Certificate Revocation List (CRL) to identify revoked certificates
 - Existence of public key implies revocation of private key
- EPID has 3 revocation lists
 - Grp-RL : Uses public key to revoke all private keys
 - Priv-RL : A specific private key may be revoked
 - Sig-RL : A private key signature may be revoked
 - EPID signing must include Sig-RL as input
- Mfg CA publishes revocation lists for verifiers
EPID Verification

• Sigma is a signed Diffie-Hellman key exchange protocol that uses EPID to sign

• EPID verification flow:
 - Verifier is provisioned with Mfg CA anchor key
 - Verifier is extended to support EPID revocation
 - Verifier must obtain fresh SIG-RL for each use of EPID
Verifier Verification

- Verifier certificate verification flow:

- Verifier is provisioned with both Bridge Cert and traditional cert chain
- Mfg CA anchor key is provisioned during manufacturing
Status of EPID

• EPID is accepted by ISO/IEC 20008-2
 – “Anonymous Digital Signatures” draft
 – Co-chairs
 – Jiangtao Li – Intel
 – Kazue Sako – NEC

• Other presentations on EPID
Conclusion

- Cloud multi-tenancy requirements apply to both servers and clients
- Identity management infrastructure needs to unify user and platform identities
- Cloud service providers and subscribers rely on bi-lateral attestation to gauge veracity of the other’s environment
- EPID is a platform identity that satisfies privacy requirements and may be cost effective to manufacture