Kerberos on the Web

Thomas Hardjono

MIT Kerberos Consortium

MIT Kerberos Conference October 20-21, 2009

Kerberos Today

- Enterprise, B2B, B2C
- Kerberos & Identity
 Infrastructure

Intra-Enterprise Kerberos

- Large presence of Kerberos in Enterprise space
 - AD, "AD-Clones", MIT code base, Intel AMT
- Desire to re-use Kerberos infra for web security
 - Increase security of web logins
 - Address authentication in Web-SSO
 - Simplification of security management
- Require Kerberos integration into web systems
 - Web-services typically already a separate infrastructure
 - Kerberos administration must also be integrated into web systems
 - Unified management of infrastructures

Kerberos for B2C & B2E Security

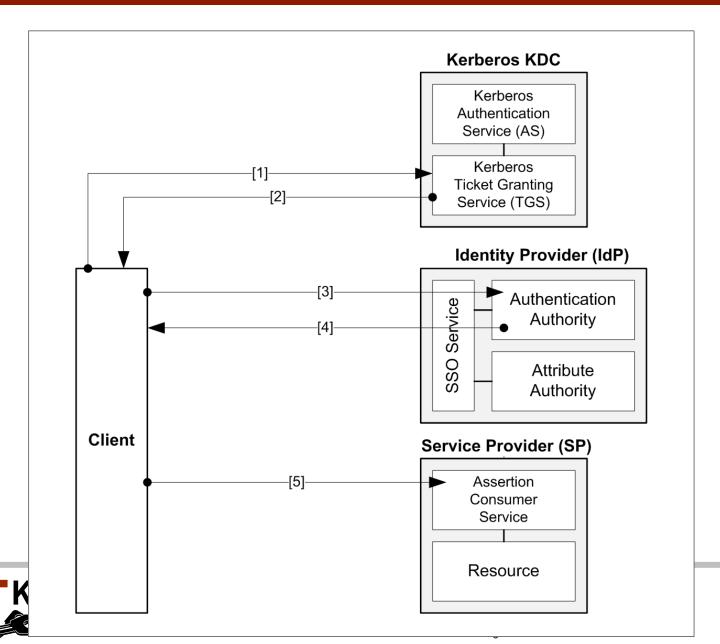
- Forms/SSL primary authentication method:
 - Passwords, HTML Forms, no client certs
 - HTTP-Negotiate underutilized
 - Limitations to current version of HTTP-Nego/SPNEGO
- B2E Web-SSO needs strong access control:
 - Intra-network services & business access only
 - Locally-scoped identities
 - HTTP-Negotiate deployed in many Enterprises
- B2C Web-SSO a harder problem:
 - Need standard interfaces
 - Part of Identity Management & Federation problem
 - HTTP-Negotiate limitations (today)

Kerberos in Identity Management

- Largely absent from SAML based Identity stacks
 - Liberty, Shibboleth, etc
- WS Security:
 - Oasis WS-S Kerberos Token Profile (AP_REQ)
 - CardSpace/InfoCard, Geneva (Microsoft)
- Kerberos and Providers:
 - Authentication to IdP still using Pwd/Forms/ SSL
 - Providers (IdP/SP/OP) have limited Kerberos large-scale operational experience

Current Efforts

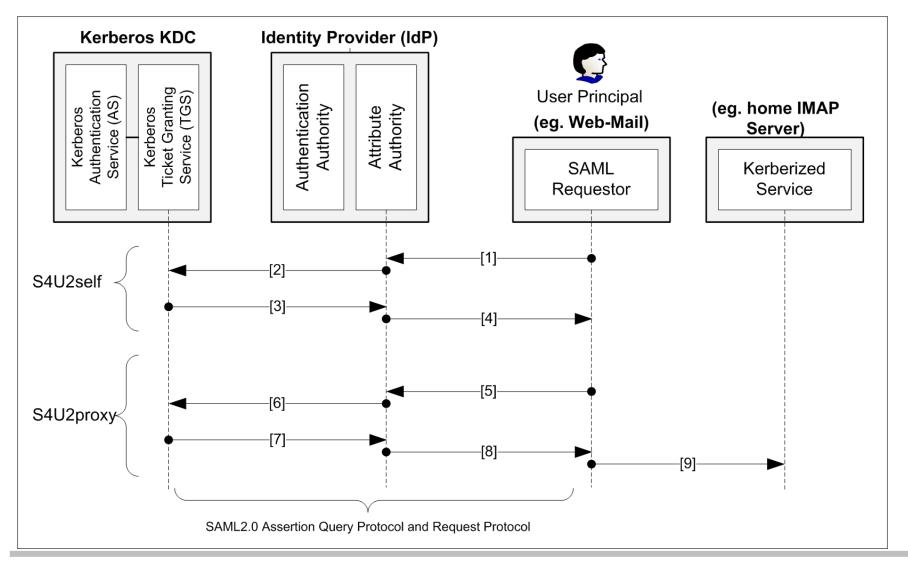
- Interoperability with SAML
- Web back-end security



Kerberos Interoperability with SAML

- Kerberos support in SAML (2.0) Systems:
 - Profiles: Web-SSO & Web Services
 - Subject Confirmation method:
 - Confirm the SAML attesting entity using Kerberos (Holder of Key)
 - Collaboration with Josh Howlett
- Authentication to Kerberized Web Service:
 - Delegation of Kerberos credential to a webapplication to access Kerberized service
 - Authentication using S4U Extensions (constrained delegation)

Confirming SAML Attesting Entity


Authentication to Kerberized Web Service

Use-Case:

- SAML system entity requires access (via a Web-Service) to a local/remote Kerberized Service on a behalf of a Client (user) Principal.
- SAML Requestor may not be able to request a service-ticket directly from the KDC since it is an entity that is not recognized by the KDC
- Possible Solution:
 - Use of the SAML2.0 Assertion Query Protocol and Request Protocol
 - Combined use of S4U2self and S4U2proxy
 - See next slides

Authentication to Kerberized Web-Service

Kerberized Web Service: S4U2self

- Goal: IdP asks authorization from the KDC (for the user) to access itself (the IdP)
 - IdP requests the TGS for a service-ticket to itself on behalf of the user (Client Principal).
 - IdP assumed already a Kerberized entity
- SAML Requestor send <AttributeQuery> msg to IdP:
 - Identifying the Client Principal (ie. the user) and target Kerberized Service
- TGS returns a service-ticket to the IdP
 - As if the ticket had been requested from the user using her own TGT

Kerberized Web Service: S4U2proxy

- Goal: IdP seeks authorization to request access to other services (eg. IMAP server) on the user's behalf
 - Requestor sends query to IdP
 - IdP uses client name & realm from S4U2self
 - IdP requests service ticket from KDC/TGS to access service (eg. IMAP server)
 - TGS issues a fowardable service-ticket,
 placing the Client Principal's name (instead of the IdP name) within the service-ticket.

Kerb-Web: Other Related Work

- HTTP-Negotiate (SPNEGO):
 - GSS-API handshake with HTTP Server
 - RFC4559 & RFC4178
 - Active Directory environments
 - "Open Internet" deployment unproven
- Some open/related issues:
 - Lack of protection of HTTP request
 - Support for multi round-trips of GSS-API mechanisms over TLS
 - State management at end-points

Related Work (cont)

- Future work at MIT-KC:
 - Kerberos interoperability in WS-Federation systems
 - Oasis WS-Federation architecture
 - Kerberos to secure back-end web infrastructure
- MashSSL (startup):
 - Based on MIT Kerberos
 - Promising "open-internet" deployment solution
 - Go to: www.safemashups.com
- MIT-KC Whitepaper:
 - Towards Kerberizing Web Identity and Services
 - http://www.kerberos.org/software/kerbweb.pdf

Thank You & Questions

Contact Information

The MIT Kerberos Consortium

77 Massachusetts Avenue W92-152 Cambridge, MA 02139 USA

Tel: 617.715.2451 Fax: 617.258.3976


Thomas Hardjono

Lead Technologist & Strategic Advisor

Web: www.kerberos.org

MIT Kerberos Consortium

Lead Technologist & Strategic Advisor Thomas Hardjono (hardjono@mit.edu) Mobile: +1 781-729-9559

