

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 1 of 62

The MIT Kerberos Administrator’s How-to Guide

Protocol, Installation and Single Sign On

By Jean-Yves Migeon

Contents

1. First part - Introducing Kerberos
1. Unix historical authentication and authorization system: NIS
2. How does Kerberos work?
3. Ticket Exchange Service
4. Authentication mechanism - Ticket Granting Tickets

1. Pre-authentication
2. 1st step: Authentication Service Request - AS_REQUEST
3. 2nd step: Authentication Service Reply - AS_REPLY

5. Service's use mechanism - Ticket Granting Service
1. 1st step: Ticket Granting Service Request - TGS_REQUEST
2. 2nd step: Ticket Granting Service Reply - TGS_REPLY
3. 3rd step: Contacting service

6. Conclusion
2. Second part - Deploying Kerberos

1. Installing Kerberos MIT
2. Server configuration
3. Client configuration

1. Clock sync
2. DNS and reverse DNS

4. Migrating from an existing database
1. Using PAM
2. Using an HTTP authentication

3. Third part - Using Services with Kerberos
1. General thoughts
2. Traditional host services
3. OpenSSH

1. Server configuration, ssh-server.foobar.com
2. Client configuration, frank.foobar.com

4. PAM
5. OpenLDAP
6. Apache

1. Server side
2. Client side

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 2 of 62

7. NFSv3 and 4
1. NFS Service configuration
2. NFS Server
3. NFS Client
4. Troubleshooting NFS with Kerberos

8. Postgresql
9. Servers' redundancy

1. The simple way
2. The more technical way

10. Servers' replication
1. Configuring the master
2. Configuring the slave
3. Propagation
4. Propagation failed?

11. Cross Realm Authentication
1. Theory
2. Configuration

4. Glossary
5. Troubleshooting
6. Footnotes
7. References

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 3 of 62

First part - Introducing Kerberos
In the real world, identification is something we, as human beings, do naturally: through
physical appearance, voice patterns, or even scent. It is based on the assumption that those
attributes are unique, and that they can be trusted. This ability provides us with the possibility
to distinguish one person from another.

However, when put in a situation where we're not able to use those attributes to identify
someone, as in a phone call for example, we're left with finding some other means to prove our
identitys. We sometimes identify ourselves with what is called a "shared secret", where one
party asks the other party to prove his identity through information that is only known by both,
like a password.

When we add a computer to this mechanism, with an identification that needs to be provided
over a network, things are going a little more complex. Sending this "shared secret", or
password, over an unsecured network can be compared to shouting your password in a
crowded room.

Many authentication mechanisms were developped during the last decade to solve those
problems; Kerberos is one of them. Often seen as an advanced system that offers many more
advantages over commonly used setups, such as distributed authentication based on Network
Information Server (NIS).

This white paper is intended to introduce, describe, and explain a Kerberos environnement, and
how to deploy such system for maximum efficiency with Single Sign On (SSO).

Unix historical authentication and authorization system: NIS
Today, NIS remains the system of choice for network authentication and authorization, were it
is used in an environment that consists of a server (containing all the necessary directory
services, like /etc/passwd and /etc/shadow1), and clients, which need this information to allow (or
deny) access to certain persons.

NIS (and his counterpart, NIS+) were developed with "central authentication" in mind:
administrators have the possibility to create realm accounts, and, with the help of file sharing
systems (like NFS), share profiles over an entire network.

NIS is easy to set up and manage, which makes it so popular. However, it remains
fundamentaly flawed on the security front. For example, NIS communications are cleartext
based. Even unpriviledged users are able to display the content of the passwd database,
through yp (yellow pages) commands.

NIS does not provide any kind of Single Sign On mechanisms, the ability to securely store
authenticators on the client, preventing the user to re-enter passwords when accessing services
(file sharing, intranet, mails, ...).

All in all, on the authentication side, NIS has some flaws that Kerberos tends to solve with his
own implementation.

Those flaws are:

• no secure propagation of user authenticators. With some time, anyone using a sniffer is
able to get all the cleartext or hashed password propagated on the network. With
Kerberos, password never cross the network, even on first login.

• no mutual authentication. In a NIS environment, there's no evidence that the client is a
legitimate one, or not. That is, any person capable of faking the server as being a

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 4 of 62

legitimate NIS client is able to get all the hashed password table stored on the server
side.

• no Single Sign On (SSO) possible. In fact, there's no information cached onto the client
that allows future use of pre-authentication when the user loged in some time ago.
When a user wants to access some kind of resources which requires an authentication,
he must reenter his password. One more time, one more risk to get his password
eavesdropped.

• When dealing with services that delegate authentication to client, like NFS, a smart
client could potentially gain access to any ressources that are shared on the network.
That's not something you really want, especially if you're asked to restrict resources'
access based on authenticator.

• Because it relies on RPC using dynamically allocated ports, NIS is firewall unfriendly.

These flaws are not necessarly tied to NIS. You can encounter the same ones with any cleartext-
based authentication process (for example, LDAP), where no particular security context has
been initiated beforehand.

Usually, securing these systems (to avoid password eavesdropping) relies on mechanisms found
on lower layers, like SSL or IPsec. While providing a security context, they do not provide users'
authentication2, something Kerberos offers, alongside SSO.

How does Kerberos work?
This part of the article will explain the mechanisms behind Kerberos: ticket exchange principles,
Key Distribution Center (termed KDC), and authentication mechanisms.

Kerberos was developed with authentication in mind, and not authorization (or accounting). In
fact, Kerberos could be compared to some supreme service that tells others: "yes, you can trust
me, and this person is the one she claims to be". Nothing more.

A commonly found description for Kerberos is "a secure, single sign on, trusted third party
mutual authentication service". It doesn't store any information about UIDs, GIDs, or home's
path. In order to propagate this information to hosts, you will eventually need yellow page
services: NIS, LDAP, or Samba.

As Kerberos is only dealing with Authentication, it does neither Authorization (the step of
granting or denying access to a service based on the user wishing to use it), nor Accounting
(account and session management, as well as logging): it delegates those to the services
requesting Kerberos' help for user's identification. Anyway, Kerberos being a "service" by itself,
it can partially provide such functionalities, but in a very limited range.

Kerberos, being a protocol, has many implementations, developed for different purposes:

• MIT Kerberos. The original one; comes from the Project Athena in early 90s. Due to
exportation restrictions on cryptography technology, another implementation of
Kerberos was developped, in Sweden: Heimdal.

• Heimdal Kerberos. Is MIT Kerberos’ Swedish counterpart. Heimdal is not restricted by
exportation rules. Originally developed in Sweden, it aims to be fully compatible with
MIT Kerberos. Since MIT export restrictions were lifted in 2000, both implementations
tends to coexist on a wider scale.

• Active Directory. Not a Kerberos implementation by itself, but kind of. Its the
Microsoft's directory, that consist of a loose Kerberos implementation with some other
services (LDAP). It's not directly compatible with MIT and Heimdal.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 5 of 62

• TrustBroker. A commercial implementation of Kerberos protocol, developped by
CyberSafe. Supports a wide range of Operating Systems (Windows, Unix, Linux, ...), and
offers full interoperability with many existing Kerberos implementations, from MIT to
Microsoft's AD.

• Shishi. A GNU implementation of Kerberos 5.

The author decided to give a try to the MIT implementation. how-tos and commands described
below are almost compatible with a Heimdal implementation, the key differences (from an
administrator perspective) being that Heimdal stores the server's configuration directly into the
database, not in a separated text file like MIT does.

There are two publicly available versions for Kerberos, namely v4 (deprecated) and v5 (often
written Kerberos 5). While v4 is still used in some places, it is strongly advised to migrate it to a
Kerberos 5 implementation, as v5 offers many more functionalities compared to v4, and an
improved security.

Now, we will go into details in Kerberos' functioning. Let's talk about the ticket exchange
service.

Ticket Exchange Service
Kerberos' communication is built around the Needham-Shroeder protocol (NS protocol).
Described in a paper published in 1978 by Roger Needham and Michael Shroeder, it is designed
to provide a distributed secure authentication service, through secret key cryptography.

All those keys are secrets shared by the two ends of a Kerberos connection. It differs from
asymmetric systems, like SSL or IPsec, where a public key is known by virtually everybody,
while the private key remains secret, and stored on the server.

For a user, the secret key is his "hashed password" (the password is reworked through a one-
way hash function and the resulted string is used as a key), usually stored in the Key
Distribution Center. For a service, the key is a random generated sequence, acting like a
password; it is also stored in Key Distribution Center, and in a file called a keytab on the
machine's service side.

For this schema to work, clients and services have to trust a third party service (the Kerberos
server), that is capable of issuing the required keys on demand.

The Kerberos communication is based around tickets. Tickets are a kind of encrypted data
scheme that is transmitted over the network, and stored on the client's side. The type of storage
depends on the client's operating system and configuration. Traditionally, it's stored as a small
file in /tmp, for compatibility reasons: each OS has some kind of filesystem, able to save data.

The main central part of a Kerberos network is the the Key Distribution Center (KDC). It
consists of three parts:

• an Authentication Server, which answers requests for Authentication issued by clients.
Here, we're in the AS_REQUEST and AS_REPLY challenging part (see below for details),
where the client gets a Ticket Granting Ticket (TGT).

• a Ticket Granting Server, which issues Ticket Granting Service (TGS) to a client. This is
the TGS_REQUEST and TGS_REPLY part, where a client gets a TGS that allows him to
authenticate to a service accessible on the network.

• a database, that stores all the secret keys (clients' and services' ones), as well as some
information relating to Kerberos accounts (creation date, policies, ...).

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 6 of 62

Usually, the KDC is a distinguished machine on the network, dedicated only to serve Kerberos
services. This is mainly for security purposes: since the KDC stores the database containing all
the secret keys, a compromised KDC allows the attacker to impersonate any service and client
stored in KDC's database.

Kerberos accounts are named through principals, the equivalent of the username for a Unix
account.

Kerberos' cryptosystem works with DES and his variants, like 3DES. AES' support is ongoing,
as described in RFC 3962 "Advanced Encryption Standard (AES) Encryption for Kerberos 5".

Now we will concentrate on Kerberos 5 mechanisms.

Each step is summarized by a picture, showing the different mechanisms taking place during
tickets negotiations. Please find them at the end of their corresponding part (Authentication
Request, and Service Request).

The convention for the pictures is as follows:

Authentication mechanism—Ticket Granting Tickets
Authentication mechanism is the first step to be done in a Kerberos environment. It provides the
user with a Ticket Granting Ticket (TGT), that serves post-authentication for later access to
specific services, Single Sign On.

Pre-authentication
Originally, Kerberos 4 protocol implementation was subject to off line attacks and brute force
cracking on tickets. This was due to the fact that the KDC issued a TGT with a principal's secret
key on each request for an authentication. A malicious guy could recursively ask for TGTs using
different principals, get the tickets, and try to brute force the user's long term key off line.

To solve this security flaw, Kerberos 5 introduced pre-authentication methods. The principle lies
in the necessity that the client identifies himself to the KDC first before getting a TGT. This way,
an attacker must contact the KDC each time he tries a new password.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 7 of 62

1st step: Authentication Service Request—AS_REQUEST

This is the first message sent to the KDC, in plain text. It contains:

• the client's principal name,

• the Ticket Granting Server's principal (termed "krbtgt principal", needed to obtain
further TGS),

• the client timestamp,

• the requested ticket lifetime (usually, 8 to 10 hours long).

The KDC receives this message, check if the client's principal has a match in the database, and if
the timestamp between client's machine and KDC are close enough (typically, 3 to 5 min). This
timestamp's check does not prevent replay; it's only used as way to early warn the user from an
incorrect time synchronization, before going any further into authentication.

If pre-authentication is mandatory, KDC won't return a TGT. Instead, it will send a
NEEDED_PREAUTH message, and ask the client to provide some pre-authentication data
before delivering the TGT. traditionally, the method used is PA-ENC-TIMESTAMP, where the
current timestamp is encrypted using the user's key, known on the client's side through
password.

In this case, the client re-send an AS_REQUEST message, this time with the encrypted
timestamp included. Given a successful pre-authentication, KDC will return a TGT; this is the
AS_REPLY step.

2nd step: Authentication Service Reply—AS_REPLY
Upon checking, the Authentication Server generates a random session key ("short term" key).
The KDC makes two copies of it: one is for the client, and is added to the AS_REPLY message,
the second copy remains available for the Ticket Granting Server. This key is mainly used for
later negotiations for other tickets concerning kerberized services.

Provided the client succeeded in his authentication, the KDC will return an AS_REPLY message,
containing the Ticket Granting Ticket. It will be stored in some kind of credential cache, for
future use. The message is encrypted with the user's key, thus preventing any impersonator
from decoding it.

The AS_REPLY message is formed of two layers; the first one is encrypted with the user's key,
while the second layer is the TGT itself, first encrypted with the Ticket Granting Server's key,
then re-encrypted with the user's key. This way, only the trusted user is able to decipher the
message and get the TGT.

The content of the AS_REPLY message is as follows:

• encrypted with user's key:

• copy of session key for user

• Ticket lifetime

• krbtgt principal name

• first encrypted with Ticket Granting Server's key, then user's key. This is the TGT:

• copy of session key

• effective ticket lifetime

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 8 of 62

• KDC timestamp

• client principal

• client IP address

Note: Although the TGT is decrypted and cached onto the client, its content cannot be read on
the client's side. It is effectively encrypted with the Ticket Granting Server's key, which is only
known by Ticket Granting Server.

in conclusion, the Authentication mechanism can be represented as follows:

Service's use mechanism—Ticket Granting Service
We suppose that the client has already gone through the authentication mechanism, and has a
Ticket Granting Ticket (TGT). Now he's requesting access to a particular service on the network
(web server, file sharing...), and for this, he requires a Ticket Granting Service (TGS).

Again, this request is separated into two steps, TGS_REQUEST and TGS_REPLY. Both messages
are encrypted, for security reasons.

1st step: Ticket Granting Service Request—TGS_REQUEST
When the user wishes to access to a kerberized service, he must first authenticate himself to it.
This pre-requisite needs a separate connection to the Ticket Granting Server: the
TGS_REQUEST.

The message sent by the client is composed of several elements:

• the TGS request itself, containing the service principal and the requested lifetime,

• the TGT acquired earlier (on a successful authentication),

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 9 of 62

• an authenticator.

The authenticator is here to thwart replay. It's a message encrypted with the session key
acquired during the AS process, and contains the user's principal and a timestamp. This way,
the KDC ensures that this unique message is coming from the right person: first by checking the
temporary session key negotiated earlier, and second, through timestamp, which detects
fraudulent attempt of replay.

Upon successful request (a valid TGT and correct authenticator), the Ticket Granting Server will
return the TGS.

2nd step: Ticket Granting Service Reply—TGS_REPLY
At this stage, the server generates a new set of session keys.

The reply message from the server is encrypted with the session key acquired through AS
process. As such, only the client that effectively identified himself some time ago to KDC is able
to read its content, and extract the TGS from it.

The message forms the TGS_REPLY part issued by KDC. It contains:

• encrypted with session's key acquired through AS process:

• copy of new session key, for user

• effective ticket lifetime

• service's principal name

• first encrypted with service's long term key, then with the actual session's key. This is
the TGS:

• copy of new session key, for service

• effective ticket lifetime

• KDC timestamp

• client principal

• client IP address

3rd step: Contacting service
Once the client obtained its TGS, he will use it to authenticate himself to the requested service
directly. Since this step depends largely on the service that required Kerberos' help, we won't go
into details here.

The service has access to its keytab, a file that stores its long term key. This key will allow the
service to decrypt the TGS sent by the client, and get all the information needed to identify user
and create security context.

Like for the TGT process, the timestamp encoded in the TGS is here to thwart replay.

Traditionally, the session key is used to sign or crypt messages between client and service. It
provides both endpoints with a way of checking the integrity of traded messages (if messages
are signed), and eventually the creation of a security context, making eavesdropping very
difficult.

In this last configuration, Kerberos is complementary to other security protocols, like TLS/SSL
or IPsec; the main difference being that they are based on asymmetric cryptography (RSA),

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 10 of 62

whereas Kerberos is built around symmetric cryptography (DES and AES). This situation is
often encountered in PKI (Public Key Infrastructure) environment.

Here is a quick visual summary of the TGS steps:

Conclusion
We can divide the Kerberos protocol into three main steps:

1. Authentication process, where the user (and host) obtain a Ticket Granting Ticket (TGT)
as authentication token,

2. Service request process, where the user obtain a Ticket Granting Service (TGS) to access
a service,

3. Service access, where the user (and host) use TGS to authenticate and access a specific
service

The service access step is not really Kerberos related, but merely depends on the service we are
authenticating to. This step is mainly covered in the third part of this article.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 11 of 62

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 12 of 62

Second part - Deploying Kerberos
In our preceding article, we described the theoretical aspects of Kerberos.

We will describe here the basic steps required to get Kerberos working on a single domain, and
how to set it up to use it effectively.

Before going any further, you need to be familiar with these terms:

• Key Distribution Center (KDC)

• Principals

• Tickets

• Ticket Granting Ticket (TGT)

• Ticket Granting Service (TGS)

• Key table (keytab)

In case your Kerberos' deployment is part of a migration that deals with authentication, you
will have to migrate all the users' password from your old system to Kerberos; and that is not an
easy task. Some hints are provided at the end of this chapter, as you require to have a working
KDC first.

Installing Kerberos MIT
Many GNU/BSD distributions have tools to automatize all the installation steps described
below, but you can also compile and run it directly from source.

For maintenance and ease of administration, it is strongly advised to use your favorite tools to
install MIT Kerberos. For quick reference, here are the package names for different systems:

OS Package name

Debian krb5-kdc and krb5-admin-server

Redhat/CentOS krb5-server

FreeBSD ports security/krb5

NetBSD pkgsrc security/mit-krb5

In case you do not have such tools at your disposal, or do not want to use them, you can
compile and install it from source. The basic steps are described below.

In case you installed it from a package manager, you can jump to the next section, Server
configuration.

Source compilation and installation
We will download the sources first. They are available at the MIT Kerberos homepage.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 13 of 62

Once you downloaded it, you will have a tar file (an archive). After untarring it, you get the
tar.gz source code, and a signature file, to check that the file you have downloaded hasn't been
altered by some malicious guy.

We use gpg (GNU Privacy Guard) to ensure the integrity of the package. In the same directory
where you have untared the source file in, type (change krb5 version accordingly, if necessary):

 # gpg --verify krb5-1.5.tar.gz.asc

The package is signed with Tom Yu's private key, member of the Kerberos MIT development
team. We need his public key to check the files' integrity.

Building the Kerberos 5 does not differ much from any other Unix package. It uses GNU
autoconf. A complete list of all the compilation options are accessible through ./configure --help
command. Generally, the defaults are sufficient in almost all cases.

So, we start configuring and compiling the binaries:

 # ./configure && make

Once finished, you should either su root or sudo to make the final step in installation:

 # make install

Note that Kerberos binaries and libraries will be installed under the default prefix directory
/usr/local. If, for some reason, you need a different directory, please do so at ./configure step,
through the --prefix=[dir] option.

Last but not least, we need to create the the krb5kdc directory which resides in localstatedir. It's
the directory where all the variable files (KDC's keys databases) will be stored in. By default,
localstatedir is /usr/local/var/. So create krb5kdc directory:

 # mkdir -p /usr/local/var/krb5kdc/

Be sure to set the permissions on this directory accordingly. Only root should have access to it.

Server configuration
Now that Kerberos is installed on your system, we should configure it.

We describe here a simple KDC installation (one domain, called a "realm" in Kerberos
terminology). More complex infrastructures are described in part three of this article.

To setup MIT Kerberos, we will do it in two steps:

• configure and run the KDC

• check that we can use it to authenticate ourselves correctly

First, edit the configuration file used by Kerberos libraries. By default, it resides in /etc/krb5.conf.
These libraries are used by KDC entities as well as Kerberos client tools.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 14 of 62

/etc/krb5.conf

 [libdefaults]
 default_realm = FOOBAR.COM
 kdc_timesync = 0
 forwardable = true
 proxiable = true

 [realms]
 FOOBAR.COM = {
 kdc = kdc.foobar.com
 admin_server = kdc.foobar.com
 }

 [domain_realm]
 .foobar.com = FOOBAR.COM
 foobar.com = FOOBAR.COM

 [login]
 krb4_convert = false
 krb4_get_tickets = false

Now, we will edit the configuration file of the KDC, namely kdc.conf. It resides in the
/usr/local/var/krb5kdc directory (except if your distribution changes the default behaviour).

kdc.conf

 [kdcdefaults]
 kdc_ports = 750,88

 [realms]
 FOOBAR.COM = {
 database_name = /var/lib/krb5kdc/principal
 admin_keytab = FILE:/etc/krb5kdc/kadm5.keytab
 acl_file = /etc/krb5kdc/kadm5.acl
 key_stash_file = /etc/krb5kdc/stash
 kdc_ports = 750,88
 max_life = 8h 0m 0s
 max_renewable_life = 1d 0h 0m 0s
 master_key_type = des3-hmac-sha1
 supported_enctypes = des3-hmac-sha1:normal des-cbc-crc:normal des:normal des:v4
des:norealm des:onlyrealm des:afs3
 default_principal_flags = +preauth }

We add the +preauth flag for security reason, unless you want compatibility with an existing
Kerberos 4 implementation. the Ticket Granting Ticket (TGT) is renewable for a maximum
period of 1 day, and expires (unless renewed) after 8 hours (a full work day).

When finished with the conf files, we create the database containing all the principals and their
passwords. Luckily, MIT offer a utility to create all the necessary files for you, namely kdb5_util.
kdb5_util is mainly used for low level maintenance (creation, dumping, saving, destruction of
KDC database, and so on).

During creation, you will be prompted for the master password. It is the main key that is used
by Kerberos to encrypt all the principals' keys in its database. Without it, Kerberos won't be able
to parse it. For later convenience, this master password can be stored in a stash file, in order to

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 15 of 62

avoid to retype it each time you restart Kerberos (therefore avoiding unnecessary human
interaction).

Execute kdb5_util to create database (the -s flag specify the creation of the stash file):

 # kdb5_util -s create

Since this password can decrypt all the Kerberos database, please respect some basic security
rules:

• long password, with letters, numbers and special chars

• never share this password.

This password does not provide any kind of authentication to Kerberos. It is used only for
encryption of the database, and access to it, for low level maintenance only.

Last part of the configuration: the Access Control Lists (ACLs) to the database. This simple text
file will define the rights some principals have on the database: listing principals, changing their
policy or their password, or updating their profile.

The path to the ACL file is defined in kdc.conf. For our installation, we use very simple (and
restrictive!) rules; adapt it to your convenience. The man page of kadmind is pretty much
straightforward concerning ACLs; first rule that match will be applied, when processed from
top to bottom.

/usr/local/var/krb5kdc/kadm5.acl

 */admin@FOOBAR.COM *

* acts as a wildcard. This rule grants all rights to any principal authenticated with a /admin
instance.

If you change the ACL file later, remember to restart the KDC.

Once finished, start up KDC (krb5kdc), and kerberos Administration Server (kadmind):

 # krb5kdc
 # kadmind

Or, depending on your OS (either SystemV or BSD-like):

 # /etc/init.d/krb5kdc start
 # /etc/init.d/kadmind start

 # /etc/rc.d/kkdc start
 # /etc/rc.d/kadmind start

Your Kerberos database is ready. The next step will be to connect to it, and check that everything
is fine. For that matter, we will now use the Kerberos administration server.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 16 of 62

Connection to administration server is done through kadmin. Since we did not create any
principal yet, connecting to administration server is impossible, as KDC can not authenticate us.
So, we use the "local" counterpart of kadmin, kadmin.local, to connect. It will access directly the
Kerberos administration interface without password, but can only be run as root on the KDC's
host.

 # kadmin.local
 Authenticating as principal root/admin@FOOBAR.COM with password.
 kadmin.local:

You are now in the Kerberos administration shell. <TAB> key works for autocompletion, and '?'
for in line help, in case you need it. If you did not notice, kadmin added a /admin instance to
your Unix username upon login, to generate the principal you will be authenticated as for this
session. That's the traditionnal behaviour.

First, we will list the content of the database, through the listprincs command. You will notice
that the database contains already some principals. They are needed for Kerberos to work,
during ticket negotiations.

 # kadmin.local
 Authenticating as principal root/admin@FOOBAR.COM with password.
 kadmin.local: listprincs
 K/M@FOOBAR.COM # master key record in KDC database
 kadmin/admin@FOOBAR.COM # admin instance of kadmin
 kadmin/changepw@FOOBAR.COM # instance to change password
 kadmin/history@FOOBAR.COM # used to keep the history of changed passwords (if required)
 kadmin/kdc.foobar.com@FOOBAR.COM # principal for administration from kdc.foobar.com (optional)
 krbtgt/FOOBAR.COM@FOOBAR.COM # Ticket Granting Server's principal
 kadmin.local:

Do not modify nor delete their properties, or Kerberos will not work anymore.

Now, for testing, we create a test user, frank (the command ank being an alias of add_principal
method):

 kadmin.local: ank frank
 WARNING: no policy specified for frank@FOOBAR.COM; defaulting to no policy
 Enter password for principal "frank@FOOBAR.COM":
 Re-enter password for principal "frank@FOOBAR.COM":
 Principal "frank@FOOBAR.COM" created.
 kadmin.local:

Done! Now, we exit the kerberos shell (exit or Ctrl+D) and check that we could authenticate
with principal frank:

 # kinit frank
 Password for frank@FOOBAR.COM:

If you did not receive any error, you should be now authenticated to Kerberos as
frank@FOOBAR.COM (you now have frank's TGT). To verify, execute klist, and check that you
have been properly authenticated (see Default principal):

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 17 of 62

 # klist
 Ticket cache: FILE:/tmp/krb5cc_0
 Default principal: frank@FOOBAR.COM

 Valid starting Expires Service principal
 02/21/07 18:27:31 02/22/07 18:27:31 krbtgt/FOOBAR.COM@FOOBAR.COM

Now, we will try to connect to administration server as user frank. For that matter, we use
kadmin, with -p flag (remember, by default, kadmin adds a /admin instance to username, so we
avoid it):

 # kadmin -p frank
 Authenticating as principal frank with password.
 Password for frank@FOOBAR.COM:
 kadmin.local:

Since frank has no rights (except changing his own password), try executing some commands:

 kadmin.local: listprincs
 get_principals: Operation requires ``list'' privilege while retrieving list.
 kadmin.local: get_policy frank
 get_policy: Operation requires ``get'' privilege while retrieving policy "frank".
 kadmin.local: ch_password
 Enter password for principal "frank":
 Re-enter password for principal "frank":
 Password for "frank@FOOBAR.COM" changed.
 kadmin.local:

If everything succeeded, your KDC is up and running! Now, we will go to a client
configuration, where we will configure a remote host.

Client configuration
The following part deals with the configuration of a basic computer host on the network, the
"client":

IP address Hostname

192.168.1.1 kdc-client.foobar.com

192.168.1.101 kdc.foobar.com

The main configuration file is /etc/krb5.conf. This file is mainly used by the Kerberos library to
configure any kerberized client requiring access to KDC.

This krb5.conf file does not differ from his "server" counterpart: in fact, even the server hosting
Kerberos is, to some extent, a client to the Kerberos service it is hosting. The only difference is
that now, ticket's exchange will be done across network.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 18 of 62

/etc/krb5.conf

 [libdefaults]
 default_realm = FOOBAR.COM
 kdc_timesync = 0
 forwardable = true
 proxiable = false

 [realms]
 FOOBAR.COM = {
 kdc = kdc.foobar.com
 admin_server = kdc.foobar.com
 }

 [domain_realm]
 .foobar.com = FOOBAR.COM
 foobar.com = FOOBAR.COM

 [login]
 krb4_convert = false
 krb4_get_tickets = false

Now that your krb5.conf file is correct, we will try to initiate an authentication to the KDC. For
that matter, we will use kinit.

But before trying kinit, we will ensure two things, necessary for authentication to work:

• clock synchronization (clock skew between both machines)

• DNS and reverse DNS

Clock sync
Clock sync is usually performed through the use of the NTP protocol, with the help of either
ntpdate (binary) or ntpd (daemon). It is mainly used by Kerberos to avoid replay attack (if an
attacker manages to get a ticket, he will not be able to use it indefinately).

Building and installing NTP is not part of this tutorial. Just check that your KDC machine and
your client have both a clock skew of less than 5 min (default MIT Kerberos value, specified in
krb5.conf); the lower, the better.

DNS and reverse DNS
Kerberos relies heavily on DNS, either for contacting KDC, or resolving hostname for
authentication (for service use -- see later on).

You do not necesseraly need a DNS server for Kerberos to work. /etc/hosts file is sufficient, but
somewhat limited when network's size grows. Kerberos only needs proper direct- and reverse-
resolution of hostname, which should point to their respective FQDN (Fully Qualified Domain
Name).

Installing and configuring a DNS does not belong to such an article. For our example, we will
use a very simple /etc/hosts file:

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 19 of 62

/etc/hosts

 127.0.0.1 localhost
 192.168.1.101 kdc.foobar.com kdc
 192.168.1.1 kdc-client.foobar.com kdc-client
 ...

Be sure to specify the FQDN first, then aliases for the host. If not, hostname resolution will fail,
and consequently, Kerberos authentication.

Now that DNS and clocks are configured, use kinit to initiate a Kerberos authentication:

 # kinit -p frank # Initiate a ticket negotiation for principal frank@FOOBAR.COM
 Password for frank@FOOBAR.COM

If your account's username on this computer is frank, simply type kinit; it will automatically use
your username in order to generate the principal that will be used for authenticating,
frank@FOOBAR.COM.

Note that you could also use kadmin on this host to administer the Kerberos database, or connect
to your Kerberos account (to change password for example). The mechanisms are exactly the
same as before; if your authentication is successul, Kerberos will connect to administration
server through a secured RPC connection.

Changing his own password through kadmin is quite tedious. To avoid all the hassle of loging
through kadmin and typing in commands, a user can use kpasswd instead.

To check that the TGT has been correctly received, use klist. It will tell you under which
principal you are currently authenticated to Kerberos, and, if applicable, which and when you
asked for a specific TGS. Since we did not set up any service to use Kerberos yet, you should not
see any entry, except the TGT:

 # klist
 Ticket cache: FILE:/tmp/krb5cc_1000
 Default principal: frank@FOOBAR.COM

 Valid starting Expires Service principal
 02/21/07 23:31:59 02/22/07 23:31:59 krbtgt/FOOBAR.COM@FOOBAR.COM

If one of the command failed, or you did not get what you were supposed to, please refer to
Troubleshooting section.

If both commands succeeded, congratulations! Your Kerberos realm is now functionnal. Now,
let's get to the last chapter of the article, where we will describe how to use Kerberos with other
services, and use all the benefits of Single Sign On (SSO). If you need some hints for a migration
of your passwords' database, see following section.

Migrating from an existing database
Traditionally, users' passwords are stored in a database (file, or binary), in a hashed version. It
could be /etc/shadow (for SystemV systems) or /etc/master.passwd (for BSD-like systems), a plain
text file (for Apache Basic auth), or even a MySQL/PostgreSQL/Oracle database. It all depends
on your installation.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 20 of 62

Technically, migrating a password database could be as easy as reversing the hashed version,
and get the clear text password from it. Well, in our case, it almost certainly will not work, for
obvious reasons. First, Unix system frequently add a salt to the password, so reversing it will
not necesseraly give you the proper password back.

Plus, add to the fact that it will cost you more and more time if you are using strong hashing
algorithms (sha-1 ou sha256), with complex passwords and thousands of users; this will become
a daunting task.

The simplest solution would be to create Kerberos principals for users, and populate it with
new random passwords. Things become easier, but you will have to get the clear text
passwords, sooner or later, in order to update your Kerberos' database.

When getting the clear text passwords, some few reminders:

• never store them in a file that could be easily eavesdropped by unwelcomed people.

• always implement a secured connection when asking your user's to upgrade their
passwords: SSL/TLS, or ssh (if they are familiar with unix or putty).

• check the Kerberos' domain part in your users principals, especially if your system is
running in a multi-domain environnement.

Be sure to create the principal with the correct associated domain referrer, otherwise cross realm
authentication will not work. For example: if user foobar is intended to be in ex1.example.com,
and you are deploying a Kerberos' realm for example.com, be sure to create principal
foobar@EX1.EXAMPLE.COM and not foobar@EXAMPLE.COM.

Anyway, there are still a few tricks you could use to upgrade properly your Kerberos'
passwords database. Since there are many prerequesites and conditions (each system having its
own set of peculiarities), your mileage may vary.

In this how-to, we suppose that you are at least using a system relying on PAM. Most services
today use PAM, or provide a simple way to auth users through it.

To create principals, we need two things:

• the username (obviously)

• the clear text password (not encrypted nor hashed), which is the critical data of the
process.

Using PAM
PAM (pluggable authentication modules) is commonly used on Unix for managing
Authentication, Authorization and Accounting operations. It is a set of modules that defines
how AAA is done.

Updating passwords is done through the pam_script module, which permits the execution of
external scripts during PAM mechanisms.

To update the principal's password in KDC, we will use a principal that has rights to change
password in database, but can not create nor delete principals. So, first, edit the ACL file and
add a given principal (one that will not conflict with your soon-to-be users' principals). Let's call
it ch_passwd:

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 21 of 62

kadm5.acl

 */admin@FOOBAR.COM *
 ch_passwd@FOOBAR.COM ADMcIL *@FOOBAR.COM

Short flag description: (consult kadmind's man page for more details)

a/A allow/disallow addition of principals policies on database

d/D allow/disallow deletion of principals

m/M allow/disallow modification of principals on database

c/C allow/disallow password changing of principals

i/I allow/disallow inquiries to the database

l/L allow/disallow principals listing of database

These flags will only allow password change for all principals in the form of *@FOOBAR.COM
(instance being not specified, it defaults to NULL, thus avoiding ch_passwd@FOOBAR.COM
from changing */admin@FOOBAR.COM passwords).

This ACL suppose that you have created all the principals in KDC database, from an existing
list. This is highly recommended, it will avoid the creation of unwanted principals.

Create ch_passwd principal:

 # kadmin.local
 kadmin.local: ank ch_passwd
 WARNING: no policy specified for ch_passwd@FOOBAR.COM; defaulting to no policy
 Enter password for principal "ch_passwd@FOOBAR.COM":
 Re-enter password for principal "ch_passwd@FOOBAR.COM":

Secondly, we store ch_passwd credentials in a keytab: this way, we will avoid human
interaction for authentication to Kerberos database administration server. Think of this keytab
as a private key, so do not forget to set read/write access correctly:

 kadmin.local: ktadd -k /root/ch_passwd.keytab ch_passwd
 Entry for principal ch_passwd with kvno 2, encryption type Triple DES cbc mode with HMAC/sha1
added to keytab WRFILE:/root/ch_passwd.keytab.
 Entry for principal ch_passwd with kvno 2, encryption type DES cbc mode with CRC-32 added to keytab
WRFILE:/root/ch_passwd.keytab.
 kadmin.local: exit

Now, set the rights:

 # chown root:root /root/ch_passwd.keytab
 # chmod 400 /root/ch_passwd.keytab

Of course, you can use a simple user, not necessarly root.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 22 of 62

Now, we will install the pam_script module. It is a PAM module that allows to run shell scripts,
while having access to the user's credentials. You can download the sources from
http://freshmeat.net/projects/pam_script/.

Compile and install it:

 # tar -xzf libpam-script-*.tar.gz
 # cd libpam-script-*
 # make
 # cp pam_script.so /lib/security/

Then configure the PAM config file you want to use for password updating. Preferably, use the
one associated to the service your users are traditionally using to authenticate themselves. Here,
we use login (note that it may differ from your system):

/etc/pam.d/login

 auth sufficient pam_krb5.so
 auth requisite pam_unix.so
 auth [default=ignore] pam_script.so runas=root expose=1 onauth=/root/krb5_passwd.sh
 ...

pam_unix.so is set to requisite: that way, pam_script won't be executed in case the user entered a
wrong password (the auth stack will fail on pam_unix module). We avoid PAM from going the
auth stack down further, and execute pam_script.so with a wrong password.

pam_script should not contribute to success nor failure of auth stack, so default attitude is
ignore.

runas set it to the user you want the script to run as

expose=1 expose PAM_AUTHTOK (the user password, required for the script)

onauth execute the script passed as parameter

Please note that this PAM module may not work if it can not access the script during execution.
For example, if you turn on privilege separation for OpenSSH and use PAM, chances are that
the script will not be executed.

The pam_krb5.so line is not mandatory. Add it if you want to authenticate your user against
Kerberos, in case their principal and correct password are correctly entered in KDC database.
Anyway, setting it to sufficient avoid any kind of conflict in case Kerberos authentication failed
for that user.

The script specified for pam_script is this one. It's a very simple shell script, which updates the
password through kadmin:

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 23 of 62

/root/krb5_passwd.sh

 #!/bin/sh
 # Some constants
 # Principal with change_password rights
 PRINC="ch_passwd@FOOBAR.COM"
 # Keytab of this principal
 KEYTAB="/root/ch_passwd.keytab"
 LOGFILE="/root/krb5_passwd.log"

 if [$# != "2"]; then
 exit
 else
 LOGIN=$1
 PASSWORD=$PAM_AUTHTOK
 fi

 DATE=`date`
 printf "[$DATE] >> " $LOGFILE

 /usr/sbin/kadmin -p $PRINC -k -t $KEYTAB \
 -q "change_password -pw $2 $1" \
 >> $LOGFILE 2>&1
 # end of script

Feel free to test it, and adapt it to your likings (mail notification, password checking...).

Beware: in case the authentication is done via PAM remotely, the machine on which this module
(and his keytab) are going to be installed has potentially full write access to users' password
database. Something you definetely do not want if this machine is in an insecured place.

Using an HTTP authentication
If your installation uses the traditional HTTP authentication method, you could take advantage
from it and create any php/perl/python script that could retrieve the password for you.

Using AuthType Basic and CGI will not work though, as Apache does not give access to the
REMOTE_PASSWORD environment variable from a CGI script.

Take care of the security here, as any form of exploit triggered through your script could
compromise your database. Also, SSL/TLS is recommended here.

Anyway, if you have no choice and must use a CGI, here's a quick and dirty way to get the
traditionnal REMOTE_USER and REMOTE_PASSWORD variables, through Apache
mod_rewrite.

First, edit your configuration file for Apache, and turn rewrite engine on. Store the
Authentication string in a variable, preferably one that will not conflict with an already existing
one:

httpd.conf

 <IfModule mod_rewrite.c>
 RewriteEngine on
 RewriteRule .* - [E=AUTH_STRING:%{HTTP:Authorization},L]
 </IfModule>

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 24 of 62

Just allow this rewriting rule only for the script that will update the Kerberos credentials:
allowing such a rule to every CGI on your server will have security concerns. For example, you
could use a location directive to restrict the RewriteRule to one file specifically:

httpd.conf

 <Location /get_passwd.cgi>

 ...
 <IfModule mod_rewrite.c>
 RewriteEngine on
 RewriteRule .* - [E=AUTH_STRING:%{HTTP:Authorization},L]
 </IfModule>
 ...
 </Location>

Next, the CGI script that will handle this variable. Pay attention, we will have to decode the
string, as it is base64 encoded. Here is a sample php script to obtain username ($name) and
password ($password) from a CGI:

get_passwd.cgi

 #! /usr/bin/php-cgi
 <?php
 // headers
 echo "Content-type: text/html\n\n";

 // If we got the variables USER and PWD
 if ($_SERVER['REMOTE_USER'] && $_SERVER['PHP_AUTH_PW']) {
 $name = $_SERVER['REMOTE_USER'];
 $password = $_SERVER['PHP_AUTH_PW'];
 } else {
 // Well, we assume here that we did not get USER and PWD
 // Attempt to read it from AUTH_STRING, thanks to mod_rewrite
 list($auth_type, $auth_string) = split("Basic ", $_SERVER['AUTH_STRING']);
 $auth_string = base64_decode($auth_string);
 list($name,$password) = split(":", $auth_string);
 }
 // Print name and password
 echo "login: " . $name . "
password: " . $password;

 ?>

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 25 of 62

Third part - Using Services with Kerberos
Welcome to the last part of this article, where we deal with Kerberos' interaction with services
requiring authentication.

Most services today require some kind of authentication. Traditionally, each of those services
manage their own set of AAA (Authorization and Accounting) policies, either by using the one
proposed by the local machine (shadow system for example, or nsswitch), or by specially
crafted protocols (like RADIUS).

Of the three As, Kerberos was meant to solve all the troubles that goes with authentication. The
protocol being standardized, it was designed to be as much application-independent as
possible. It should avoid having multiples authentication systems, and multiple password
databases.

The Kerberos system we will use in this part is the exact same as the one we configured
previously. The differences are that we will not use it for users only, but for users and services.

General thoughts
As we explained before, Kerberos does not make any difference between a user (person) and a
service. Both are considered principals. A user has a password, from which we generate a key,
while a service has directly a service key (stored in a keytab).

The service's key is only known from the service and the KDC. It means that the keytab should
be created with proper rights : only the service which requires it should be allowed to read the
keytab. If not, any person (or service) having read access to this keytab could spoof the service's
identity.

A keytab can contain more than one key. The file can be used for more than one service, and act
as a shared resource.

Since a keytab contains the long term key of the service, if you change the keys regularly, be
sure to update the keytabs accordingly. Also, a keytab contains the KVNO (the key version
number), that increments each time the given key is changed). KVNOs must match on both
ends (in keytab and in KDC database).

Keytab are maintained through the ktutil utility. For example, to "read" the content of our
ch_passwd.keytab used before:

 # ktutil
 ktutil # rkt /root/ch_password.keytab
 List its content:
 ktutil # list
 slot KVNO Principal
 ---- ---- --
 1 2 ch_passwd@FOOBAR.COM
 2 2 ch_passwd@FOOBAR.COM

Depending on your configuration, a keytab may contain more than one entry for a given
principal. That is normal; if you use more than one encryption type, a keytab stores all the
associated keys you wanted to export in it.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 26 of 62

The principal used for each service is completely dependent on the service's configuration. It
will slightly differ from a user's one, as a service does not use instances and is usually bound to
one main machine (one hostname) in the DNS, whereas a user is not.

For that matter, the service's principal is commonly generated as follows:

service_name/fqdn@REALM

For example, consider we have an Apache server running on hostname www.foobar.com.
Usually, the name associated to http service is HTTP. Then, Apache's principal will be
HTTP/www.foobar.com@FOOBAR.COM.

Please note that the required FQDN is the main hostname stored in your DNS tree, and not one
of its alias (CNAME). If you do not follow this rule, reverse-DNS mapping will not work, and
Kerberos authentication will eventually fail.

Clients will require Kerberos libraries to use Kerberos mechanisms. So, on each host where you
will make use of Kerberos, you will have to edit the /etc/krb5.conf file, and set the configuration
properly.

For this part, we will use the same set of hosts, described in Second part - Client configuration.
Their /etc/krb5.conf files will look like this:

/etc/krb5.conf

 [libdefaults]
 default_realm = FOOBAR.COM
 kdc_timesync = 0
 forwardable = true
 proxiable = true

 [realms]
 FOOBAR.COM = {
 kdc = kdc.foobar.com
 admin_server = kdc.foobar.com
 }

 [domain_realm]
 .foobar.com = FOOBAR.COM
 foobar.com = FOOBAR.COM

 [login]
 krb4_convert = false
 krb4_get_tickets = false

It simply overrides some default values (like forwardable and proxiable options), and informs the
hosts on subnet foobar.com to which KDC they should report to; foobar.com being mapped to
realm FOOBAR.COM, hosts will make tickets requests to the appropriate KDC server,
kdc.foobar.com.

Bear in mind the picture below, from first part of the article. We will use it constantly here.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 27 of 62

Introduction is over. Let's dive in.

Traditional host services
By host services, we mean services traditionally tied to Unix machine and accounts: su, ftp, rsh
are examples.

For their kerberized counterparts to work (ksu, kftp, ...), each host should have their entry stored
in KDC database, with a principal based on this model:

host/fqdn@REALM

For example, for host kdc-client.foobar.com, the principal will be:

host/kdc-client.foobar.com@FOOBAR.COM

That way, the host will be able to take part in a Kerberos tickets negotiation.

On the client's host side, the keytab's path is specified in /etc/krb5.conf, with the
default_keytab_name attribute. If not specified, it will default to /etc/krb5.keytab (see krb5.conf
manpage for details).

So, firstly, we will create the needed principal, host/kdc-client.foobar.com, on KDC:

 # kadmin.local
 kadmin.local: ank -randkey host/kdc-client.foobar.com@FOOBAR.COM

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 28 of 62

The -randkey option ask to generate a random key for this principal. As we said before, a service
has no password, so we use this option to provide a true random key. Now, export its keys by
means of a keytab:

 kadmin.local: ktadd -k /tmp/krb5.keytab host/toulouse.foobar.com

The krb5.keytab must be copied (with scp for example) to the path provided by
default_keytab_name on kdc-client.foobar.com host. After being done, be sure to remove
/tmp/krb5.keytab, as it contains the key identifying kdc-client over your network.

Once the copied keytab on kdc-client.foobar.com is put in the right place, set its rights
accordingly:

 # chown root:root /etc/krb5.keytab
 # chmod 400 /etc/krb5.keytab

Now, this host is ready to use any kerberized version of its utilities. For example, let's use ksu.

Consider that one of your user, named frank, with the principal frank@FOOBAR.COM, is
allowed to ksu to root on host kdc-client. To allow him to do so, you will simply add his
principal to /root/.k5login on this host:

 # echo "frank@FOOBAR.COM" >> /root/.k5login

Now, each time frank is logged on kdc-client, considering he is already authenticated to the
KDC (and obtained his TGT), he will be able to switch to root account of kdc-client, without
retyping or reentering its password, through ksu.

OpenSSH
For administration, it is quite common to bounce from one host to another, mainly for
maintenance tasks. As a consequence, having to retype a full password each time you need to
login can be quite cumbersome.

OpenSSH provides a mechanism to avoid typing in a password to authenticate. It is a challenge-
based negotiation, built around asymmetric keys.

Basically, the user possesses his own private key (which can be password protected or not);
upon a connection request, the ssh server, having the user's public key, encrypts a message with
it (we call it a "challenge"), and sends it to the client.

Deciphering the challenge requires the private key. If the client managed to get the correct
challenge back, the ssh server assumes that the client is the person he claims to be. If not, it
means the client was not able to decipher the challenge, thus not having the private key.

This mechanism is quite common with asymmetric keys. SSL/TLS is based on it. However, it
has some drawbacks:

• in this context, SSO is not possible. Providing SSO with asymmetric cryptography is
only available through PKI (Public Key Infrastructures), which are heavier to maintain
than a simple challenge-based mechanism.

• the credentials are not forwardable. That is, if frank connects from host A to host B
through ssh and then wants to connect to host C, it will need to expose his private key
on host B, or re-enter his password.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 29 of 62

• from an administrator point of view, authentication tokens are not necessarly stored in a
proper manner. The repositery being not centralized, it can become troublesome to
manage all the identities.

Properly configured, Kerberos manages to solve these problems.

For the continuation, we will assume that user frank (principal: frank@FOOBAR.COM) wishes
to connect through SSH (version 2) to a host named ssh-server.foobar.com, from his
workstation, frank.foobar.com.

OpenSSH provides a remote shell access, so the service name associated with it is host (see
previous section for more explanations about host-based services).

As always, before configuring ssh, we will add it to our KDC. So, if you do not have already a
host entry for this machine, connect to kadmin interface, and add a principal for it:

 kadmin.local: ank -randkey host/ssh-server.foobar.com@FOOBAR.COM

and exports the keys to a keytab file:

 kadmin.local: ktadd -k /tmp/ssh-server.keytab host/ssh-server.foobar.com
 kadmin.local: exit

Copy the keytab file to ssh-server.foobar.com; for example, through ssh:

 # scp /tmp/ssh-server.keytab root@ssh-server.foobar.com:/etc/krb5.keytab

The keytab should be put into the default path as specified by default_keytab_name in
/etc/krb5.conf on ssh-server.foobar.com. Set the rights and owners for it properly:

 # chown root:root /etc/krb5.conf
 # chmod 400 /etc/krb5.conf

We are done for the KDC part. Now we will proceed to the server (sshd) and client (ssh)
configuration.

Server configuration, ssh-server.foobar.com
We supposed you want to take full advantage of SSO: ticket forwarding and negotiation. With
OpenSSH, this is achieved thanks to the GSSAPI. There are two main options to enable to use
Kerberos mechanisms: GSSAPIAuthentication and GSSAPIDelegateCredentials.

Edit /etc/ssh/sshd_config, and add/uncomment those two options:

/etc/ssh/sshd_config

 # Ticket negotiation, to allow seemless login through SSO (if possible)
 GSSAPIAuthentication yes
 # Ask credentials delegation (TGT forwarding)
 GSSAPIDelegateCredentials yes

Now restart your sshd daemon (OS dependant):

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 30 of 62

 # /etc/init.d/sshd restart

or

 # /etc/rc.d/sshd restart

Client configuration, frank.foobar.com
The same goes here for the client, except that GSSAPIAuthentication and
GSSAPIDelegateCredentials is not enabled by default. So, we will have to enable it in our ssh
configuration.

Edit /etc/ssh/ssh_config, and change the file accordingly. For example, we want to enable
Kerberos mechanism for all Hosts:

/etc/ssh/ssh_config

 Host *

 GSSAPIAuthentication yes
 GSSAPIDelegateCredentials yes

Save and close file.

These options can also be set directly on the command line, with -o flag:

 # ssh -o GSSAPIAuthentication=yes -o GSSAPIDelegateCredentials=yes

Note that depending on your ssh setup, GSSAPI authentication will not necessarly comes up as
first possibility during authentication process. Many default installations use a public key based
authentication as first mechanism. See PreferredAuthentication in ssh_config(5) for details.

To test our new installation, open a new session with user frank on frank.foobar.com, and
check that we have his TGT:

 # klist
 Ticket cache: FILE:/tmp/krb5cc_1000
 Default principal: frank@FOOBAR.COM

 Valid starting Expires Service principal
 07/14/07 12:41:12 07/14/07 20:01:41 krbtgt/FOOBAR.COM@FOOBAR.COM
 renew until 07/15/07 02:15:28

If you do not have a TGT for frank, kinit for it, and ask for a forwardable ticket (-f switch):

 # kinit -f frank

Now we should be able to connect to ssh-server.foobar.com without having to reenter frank's
password:

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 31 of 62

 # ssh frank@ssh-server.foobar.com
 ssh-server ~ #

Once our session is opened, retype klist to see if the ticket was properly forwarded:

 ssh-server ~ # klist
 Ticket cache: FILE:/tmp/krb5cc_1000_uLicqi7389
 Default principal: frank@FOOBAR.COM

 Valid starting Expires Service principal
 07/14/07 12:43:43 07/14/07 20:13:16 krbtgt/FOOBAR.COM@FOOBAR.COM
 renew until 07/15/07 02:13:12

Having a TGT on ssh-server, frank can now successfully use it to authenticate to another ssh
server, provided it was configured with GSSAPIAuthentication enabled.

Some notes concerning ticket forwarding: to be forwardable, the TGT must have its Forwardable
flag armed. In order to check it, simply use klist with the -f switch:

 # klist –f
 07/14/07 12:43:43 07/14/07 20:13:16 krbtgt/FOOBAR.COM@FOOBAR.COM
 renew until 07/15/07 02:13:12, Flags: FRIA

If F does not appear in the flags list, then this ticket is not forwardable, and will not be passed to
ssh server upon connection. To specifically ask for a forwardable ticket, add the -f switch to kinit
command, or change the default policy in /etc/krb5.conf (set the forwardable value to true).

PAM
PAM, the "Pluggable Authentication Module", is a set of modules with very flexible rules that
allow to fine tune the authentication (to some extent, authorization and accounting) on most
recent Unix and Unix-like systems.

PAM consists of a set of files located in /etc/pam.d/, typically one by service that will use it (ssh,
httpd, login, ...), where the administrator could set the rules for accessing each of those services.

PAM and PAMified services are able to use Kerberos authentication, through the pam_krb5.so
module. You will have to modify the service's PAM file in order to use PAM with Kerberos.

For example, for traditionnal login, just add pam_krb5.so to your list of modules:

/etc/pam.d/login

 auth sufficient pam_krb5.so
 auth required pam_unix.so try_first_pass

 account required pam_krb5.so
 account required pam_unix.so

 password required pam_krb5.so
 password required pam_unix.so

 session optional pam_krb5.so
 session required pam_unix.so

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 32 of 62

Now, the service login will use Kerberos as authentication possibility. The PAM module will take
care of the negotiation and the creation of all tickets and credential caching necessary for SSO.

Note

Using Kerberos through pam_krb5 does not mean that your application is
"kerberized". pam_krb5 is a way of checking the user credentials against a Kerberos
KDC, and obtain tickets; no more, no less. It does not mean that your application will
take full advantages of Kerberos (ticket negotiation, or secure password checking). Using
telnet with pam_krb5 is not equivalent to a full kerberized ktelnet or krsh!

OpenLDAP
OpenLDAP is an open source implementation of the LDAP protocol. Since it supports GSSAPI,
you can authenticate to an OpenLDAP using Kerberos (through a TGS).

We won't go into the details of setting up an OpenLDAP directory. That is not the goal of this
article.

An LDAP DIT (Directory Information Tree) contains DN (distinguished names), one for each
entry. In order to correctly map a DN with a particular Kerberos principal (LDAP and Kerberos
are quite different on their naming conventions), we will have to specify the matching rules in
slapd.conf, through the sasl-regexp option.

Firstly, we will have to check that your LDAP service supports the SASL GSSAPI mechanism, as
it is required for Kerberos authentication. So, we request this information from root DSE (DSA
Specific Entry):

 # ldapsearch -x -s base -b "" + | grep GSSAPI

(do not forget the + , as we need to display the operational attributes).

If you have a line:

 supportedSASLMechanisms: GSSAPI

Then your slapd service supports Kerberos authentication. If not, you have to reinstall your
OpenLDAP and enable GSSAPI mechanisms.

For bind operations, the Kerberos principal will be reworked to obtain a certain dn syntax. This
dn is only used for binding to the LDAP server, and indicate a special auth mechanism (in our
case, GSSAPI). This is not the dn that is found in the LDAP directory.

The convention is as follows:

Kerberos principal LDAP DN (distinguished name)

foobar@EXAMPLE.COM uid=foobar,[cn=EXAMPLE.COM],cn=gssapi,cn=auth

Please note that if the principal contains an instance, like foobar/admin (/admin instance), the
dn will be uid=foobar/admin,cn=gssapi,cn=auth.

The cn for Kerberos realm (cn=EXAMPLE.COM) is only needed if your slapd service and
Kerberos KDC resides on different Kerberos realms.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 33 of 62

Here, we have the dn used for bind operation to the OpenLDAP service. Now, we need to use
the attributes used in this dn to craft some matching rule, in order to match this dn with a
specific entry (object) in our DIT. For that matter, we edit the slapd.conf file, and use the sasl-
regexp option.

This option is pretty straight-forward. We have a regexp used for attribute matching, and the
information extracted from this regexp populates a LDAP request. All matching dn are then
automatically bound to this Kerberos principal.

Example: suppose we are authenticated as principal foobar, and we wish to bind to the
OpenLDAP directory, on the same Kerberos realm EXAMPLE.COM. Our Kerberos' principal is
therefore: foobar@EXAMPLE.COM, and the DN with which we are bound to LDAP is
uid=foobar,cn=gssapi,cn=auth.

Considering that my corresponding entry in the DIT is
uid=foobar,ou=users,dc=example,dc=com, the sasl-regexp rule would be:

slapd.conf

 sasl-regexp
 uid=(.*),cn=gssapi,cn=auth
 ldap:///ou=users,dc=example,dc=com??sub?(&(uid=$1)(objectClass=inetOrgPerson))

The first matching rule will get the foobar string, and the LDAP request will look like:
ldap:///ou=users,dc=example,dc=com??sub?(&(uid=foobar)(objectClass=inetOrgPerson))

This request looks for an entry with uid=foobar and objectClass=inetOrgPerson, in the subtree
of ou=users,dc=example,dc=com. If it finds one, it will be bound to the designated Kerberos
principal.

Of course, you can specify more than one regexp, and make real complicated ones too. See
OpenLDAP on-line documentation for details.

Now, after having modified your slapd.conf file, restart slapd daemon.

From now on, Kerberos principal foobar@EXAMPLE.COM should be authenticated as dn:
uid=foobar,ou=users,dc=example,dc=com.

One way to check that your regexp are working properly is to used the LDAP "who am I"
extended operation. With OpenLDAP, after being correctly authenticated to KDC, use the
command line tool:

 # ldapwhoami
 SASL/GSSAPI authentication started
 SASL username: foobar@EXAMPLE.COM
 SASL SSF: 56
 SASL installing layers
 dn:uid=foobar,ou=users,dc=example,dc=com
 Result: Success (0)

(without any arguments, as we do not want to be authenticated through a simple authentication
mechanism).

If the returned dn is the one you’re waiting for (from an OpenLDAP point of view), then your
sasl-regexp syntax is correct.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 34 of 62

Apache
Apache, the web server, can be configured to use many kind of authentication mechanisms,
and, to some extent, authorization (for an Intranet, for example).

Traditional identification goes through the use of a login and password, upon a HTTP 401 status
response.

However, if the user is already logged in on an Intranet, he has probably entered his username
and password upon login already. Reentering them upon accessing the web server is something
easily avoidable with Kerberos.

For that matter, you will need to set up Apache properly (server side), and the web browser
(client side).

Server side
A specific module has been developed to allow a very good collaboration between Apache's
authentication process and Kerberos, namely mod_auth_krb5.

It offers many options. The good part of it is its retro compatibility system: if your client does
not support Kerberos authentication (GSSAPI mechanisms), it will propose a classical
authentication, where the user will be asked to enter his login and password in a dialog box.

Using mod_auth_krb5 is preferred for Kerberos authentication, instead of PAM. The main reason
being that mod_auth_krb5 sends a Negotiate header, that asks the client's browser to provide the
TGS for authentication; whereas PAM will only use a traditional HTTP 401 dialog box.

Through Negotiation, the client's host will present its TGT to KDC and request a TGS for the
HTTP service. Once the TGS is obtained, it will be cached on the client's host, and used for
further authentication to HTTP server (in our case, Apache).

Before installing the module, we must add Apache service as a registered principal in KDC. The
service is identified as HTTP, but you can change it at will. Be sure to adjust Kerberos module
configuration accordingly.

Connect to administration shell (through kadmin), and create the HTTP service hosted on
webserver.foobar.com. Since it is a service, make the password key random (with -randkey flag):

 # kadmin.local
 kadmin.local: ank -randkey HTTP/webserver.foobar.com@FOOBAR.COM

Please bear in mind that webserver.foobar.com is the FQDN of the host where the HTTP service
is running. The returned FQDN must match the full hostname of the server, and not the address
your users and clients will use to connect to this server (a typical example is when your
webserver is found behind a router, or is used through NAT devices).

Now, export the keytab file to apache_auth.keytab, as Apache will need it during tickets
negotiations:

 kadmin.local: ktadd -t apache_auth.keytab HTTP/webserver.foobar.com@FOOBAR.COM

The keytab file must be readable by the process which uses it; in our case, Apache's user. So set
the rights accordingly:

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 35 of 62

 # chown root:apache apache_auth.keytab
 # chmod 440 apache_auth.keytab

From now on, you have a keytab that permits Apache service (HTTP) on host
webserver.foobar.com to authenticate directly to KDC.

We have service HTTP and its keytab registered. To use them with Apache, we install the
mod_auth_kerb module. It can be found (as well as every documentation you need about it)
directly onto the project's web page http://modauthkerb.sourceforge.net/.

To install it, you can either follow their guide, or use your favorite OS package management
tools. The module is usually named mod_auth_kerb in the repository.

To use the module, load it in Apache config files. Depending on your Apache installation, you
will have to add or uncomment a LoadModule directive:

httpd.conf

 LoadModule auth_kerb_module /usr/lib/apache2/modules/mod_auth_kerb.so

And then use the new AuthType to take advantage of it. For example, suppose that we want to
authenticate users using Kerberos from /testkrb5 Location:

httpd.conf

 <Location /testkrb5>
 AuthName "Kerberos authentication on foobar.com domain"
 require valid-user
 # We use Kerberos module method
 AuthType Kerberos
 # The realm it corresponds to (see /etc/krb5.conf)
 KrbAuthRealms FOOBAR.COM
 # The service's name in KDC
 KrbServiceName HTTP
 # We want to use Negotiate method to use TGS from client
 KrbMethodNegotiate on
 # If the client does not support Negotiate, use 401 method instead
 KrbMethodK5Passwd on
 # cache credentials (in case the Negotiate method is not supported)
 KrbSaveCredentials on
 # Where the keytab is located
 Krb5Keytab "/etc/apache2/apache_auth_krb.keytab" </Location>

When finished with configuration, restart Apache to take modifications into account.

Now, depending on the Authentication mechanism used, tickets will be either cached on the
client's host (if negotiation succeeded), or on webserver's host (thanks to KrbSaveCredentials
option).

If the ticket is saved on the webserver, the path to it (in case you need the ticket for further
processing) can be obtained from the $KRB5CCNAME environment variable. Note that the
ticket is destroyed after the request has been served by Apache, for security reasons.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 36 of 62

Note

Due to time resolutions issues (see bug 'Request is a replay' + Basic auth), it is strongly
advised to set kdc_timesync value to 0 on the client (in our case, it is the web server).

If you do not do so, in some particular situations with lots of Basic Auth requests, the
KDC will return an error, and authentication will eventually fail. Note that this will only
happen in case the authentication is done through a Basic Auth mechanism, since in this
case, Apache will negotiate a full TGT+TGS demand on each http request anew.

In order to check our setup, we now have to configure a client that will connect to Apache, and
deal with Kerberos mechanisms.

Client side
In order to use the SSO mechanisms offered by Kerberos, both ends must support it. We just
saw that Apache, through mod_auth_krb5, has full support of Kerberos, through the Negotiate
header.

However, things do not look so easy on the client's side. You will have to deal with different
systems, mostly Windows, MacOSX, or Linux.

Kerberos support is not that easy to determine on a host. Although Heimdal and MIT libs tends
to reduce their discrepancies from day to day, and are commonly used on Unix and Unix
compatible systems (*BSD, GNU/Linux, MacOSX), things are a lot messier when using
Windows.

Many browsers support GSSAPI mechanisms on Unix. Firefox, Konqueror, and Safari are part
of them.

Konqueror and Safari require the least configuration here: they will natively respond to
Negotiate method. So, to use them with our Apache web server with Kerberos enabled, simply
connect and go to the appropriate address (in our previous example,
http://webserver.foobar.com/testkrb5).

Considering you had already obtain a TGT from KDC (through kinit and/or upon login), you
should be directly authenticated by Apache. Note that it will cache the HTTP TGS upon
Negotiation:

 # klist
 Valid starting Expires Service principal
 04/16/07 18:28:56 05/16/07 06:28:56 krbtgt/FOOBAR.COM@FOOBAR.COM
 04/16/07 18:29:13 05/16/07 06:29:13 HTTP/webserver.foobar.com@FOOBAR.COM

If not (it asks you to enter a login and password), there are many possibilities. The most
probable ones are either you do not have a TGT, or your browser does not correctly handles the
Negotiate request.

To check you have a TGT, simply use klist. If you get a line with a Service Principal of krbtgt:

 # klist
 ...
 Valid starting Expires Service principal
 04/16/07 18:28:56 05/16/07 06:28:56 krbtgt/FOOBAR.COM@FOOBAR.COM
 ...

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 37 of 62

then you have a TGT. If not, simply use the kinit command to issue a TGT request.

Depending on your OS, the credentials are cached in specific locations. Please refer to the man
page of kinit for more details.

If you still can not use Kerberos and you are sure that your browser support GSSAPI, the server
logs will prove helpful, especially for the KDC and Apache. Most common errors include bad
FQDN, and key version number (KVNO) mismatch when exporting HTTP keytab. See
Troubleshooting section for help.

For Firefox, GSSAPI is also natively supported, but not enabled. To activate it, you should go to
the config page. Type in "about:config" in link bar, press enter, and a series of variables will print
into your browser's window. They all control Firefox environment.

We are interested in one in particular: network.negotiate-auth.trusted-uris.

This variable control the servers to which Firefox will positively answer to Negotiate method.

Browse (or search) for it, and double-click on its field.

The value is a list of comma-separated server addresses, with the according protocol for access
(like http or https).

For our example, the server address is webserver.foobar.com, accessed through http. Then, we
should enter this URL (without locations, as this is a server-wide parameter):

 http://webserver.foobar.com

Firefox will only respond positively when this address is used. If you access
webserver.foobar.com through another URL, like http://webserver, you should add it to the list
in order to activate support for it:

 http://webserver.foobar.com, http://webserver

Same goes for https and/or IPs. For example:

 https://webserver.foobar.com, https://webserver, http://10.0.240.3

Now Firefox should answer properly to a Negotiate request for this server.

NFSv3 and 4
By default, NFS uses AUTH_SYS as authentication mechanism. Two hosts (the NFS client and
NFS server) share the same set of UIDs, synchronized by different means (the most common
way being yellow pages systems, like NIS).

When the host is sending out commands or requests (Remote Procedure Calls, or RPC), they are
identified by the UID of the user issuing them on the client. They travel over the network until
they reach the NFS server, where they are processed.

The RPCs are neither signed, nor mutually verified: the server has no way of knowing that the
commands were properly issued by the legitimate user, or someone spoofing his identity. On
critical systems, where security and confidentiality are primary objectives, this is not good.

One way to ensure that those RPCs are legitimate is to sign them with a key. This way, the
server would be able to check that the command was issued by the right person, and was not

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 38 of 62

tampered. Since Kerberos uses keys for authentication, we can use them to sign the RPC, thus
avoiding all the disadvantages mentioned earlier.

Kerberos support for NFS depends heavily on what you want to do, and which tools are at you
disposal on your OS. Indeed, they are not all equals in regards to Kerberos support with NFS.
For that matter, we will try to remain as general as possible here, and indicate what are the
requirements to use Kerberos mechanisms.

To check that Kerberos will work with your NFS system, you will have to rely on the
documentation provided with your OS.

From the beginning, adding Kerberos functionality to NFS was not as tricky as it seems: it was
already supported for NFS2. We add a more complicated security option to the already existing
one, AUTH_SYS.

However, to support a wider set of mechanisms for authentication, Sun defined a new interface,
the RPCSEC GSSAPI. Depending on your system, it is not necessarily fully implemented. For
example, the latest version of nfs-utils for Linux 2.6 do not offer a krb5 security option. To add
its support, developers and maintainers generally use patches (provided by the NFS4 project
from CITI) to enable such options.

Since NFSv4 does include RPCSEC GSSAPI interface by default, you will be able to use
Kerberos with it.

Downside is, NFSv4 is not as widely used as NFSv3 (in 2007, most BSDs and some Linux
distributions do not enable NFSv4 by default). So if you use different operating systems on your
network, you will probably have to rely on NFSv3.

As development of NFSv4 is an active progress, the documentation may evolve further after the
writing of this tutorial. If you plan on using Kerberos with NFSv4, please refer directly to the
source.

For a more in depth guide, please consult Kerberized NFSV4 Setup Tutorial, written by Aimé Le
Rouzic.

From now on, we will concentrate on using NFS with Kerberos, whether it is NFSv3 or NFSv4.

Please note that installing and configuring NFS shares is beyond the scope of this article. We
consider that you already have a working implementation, and just want to add Kerberos to it.

NFS Service configuration
We have three hosts:

• the KDC, kdc.foobar.com

• the NFS server (sharing directories), nfs-server.foobar.com

• the NFS client (mounting shares), nfs-client.foobar.com

Contrary to most services, NFS will require two principals: one for the NFS server, and one for
the NFS client. Their respective keytabs will act as a mutual authentication between the two
hosts upon mounting NFS shares.

First connect to KDC, and create the required principals:

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 39 of 62

 # kadmin.local
 Authenticating as principal root/admin@FOOBAR.COM with password.
 kadmin.local: ank -randkey nfs/nfs-server.foobar.com
 WARNING: no policy specified for nfs/nfs-server.foobar.com @FOOBAR.COM; defaulting to no policy
 Principal "nfs/nfs-server.foobar.com @FOOBAR.COM" created.
 kadmin.local: ank -randkey nfs/nfs-client.foobar.com
 WARNING: no policy specified for nfs/nfs-client.foobar.com @FOOBAR.COM; defaulting to no policy
 Principal "nfs/nfs-client.foobar.com @FOOBAR.COM" created.

Export their keytabs. The one containing the key for the NFS server (nfs-server.foobar.com)
must be copied onto the NFS server, and the one containing the key for the NFS client (nfs-
client.foobar.com) must be copied onto the NFS client.

 kadmin.local: ktadd -k nfs-server.keytab nfs/nfs-server.foobar.com
 Entry for principal nfs/nfs-server.foobar.com with kvno 2, encryption type Triple DES cbc mode with HMAC/sha1
added to keytab WRFILE:nfs-server.keytab.
 Entry for principal nfs/nfs-server.foobar.com with kvno 2, encryption type DES cbc mode with CRC-32 added to
keytab WRFILE:nfs-server.keytab.

 kadmin.local: ktadd -k nfs-client.keytab nfs/nfs-client.foobar.com
 Entry for principal nfs/nfs-client.foobar.com with kvno 2, encryption type Triple DES cbc mode with HMAC/sha1
added to keytab WRFILE:nfs-client.keytab.
 Entry for principal nfs/nfs-client.foobar.com with kvno 2, encryption type DES cbc mode with CRC-32 added to
keytab WRFILE:nfs-client.keytab.

Move each keytab to its respective host.

Note

For NFS server and client, the keytab path will default to /etc/krb5.keytab (the exact same
one as for the "host" service). So, if you already have a keytab containing "host" keys, you
cannot simply replace the old keytab with the newly exported one, or you will erase the
"host" entries. To merge two different keytabs, use ktutil, as described in the general
Troubleshooting section.

We will now proceed to NFS server configuration.

NFS Server
After having successfully copied the nfs-server keytab to NFS server (nfs-server.foobar.com),
connect to it, and set the proper owner and rights to /etc/krb5.keytab (owner: root, rights:
readonly for owner, none for others).

You should have, at least, some nfs service entries in /etc/krb5.keytab, like those (use ktutil to read
the keytab content):

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 40 of 62

 # ktutil
 ktutil: rkt /etc/krb5.keytab
 ktutil: list
 slot KVNO Principal
 ---- ---- --
 1 2 nfs/nfs-server.foobar.com@FOOBAR.COM
 2 2 nfs/nfs-server.foobar.com@FOOBAR.COM
 ...

Edit the /etc/exports file, to add some extra shares, this time with Kerberos support. The entries
have exactly the same options as traditional ones, except that for Kerberos, we do not specify
machine resolution requirements. The string is replaced by a gss/krb5 entry.

Note that this rule may differ from one operating system from another. Please consult the
exports(5) man page for details.

Note

Q - Wait! Do you mean that we cannot restrict NFS access based on IPs or subnets for
GSS mechanisms?

A - In essence, yes; however, note that a host requires a keytab file and an entry in the
KDC for accessing NFS shares. If a host has no keytab (or its principal is revoked from
database), he will not be able to mount Kerberos protected exports. Recent nfs-utils
(starting from version 1.1.0 for Linux) do support machine name format for krb5 entries,
but strictly speaking, that is not necessary; you can still use the old syntax.

There are three different ways to export NFS shares, with krb5 (by increasing security level):

• gss/krb5: only user identity is guaranteed.

• gss/krb5i: RPCs are signed. Avoid the RPCs to be altered after sending.

• gss/krb5p: RPCs are encrypted. They cannot be altered nor readable (except by client
and server)

Beware: increasing security context will have performance issues, on both sides.

Here, we use the gss/krb5 method.

Our /etc/exports will look like this:

/etc/exports

 # /etc/exports: NFS file systems being exported. See exports(5).
 # Traditional exports, on 192.168.1.0 subnets
 /exports 192.168.1.0/24(rw,root_squash,sync,subtree_check)
 /exports/tmp 192.168.1.0/24(rw,root_squash,sync,subtree_check)

 # Same exports, but with Kerberos enabled
 /exports gss/krb5(rw,root_squash,sync,subtree_check)
 /exports/tmp gss/krb5(rw,root_squash,sync,subtree_check)

Close file, and reexport directories:

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 41 of 62

 # exportfs -r

Reinitialize all NFS daemons:

 # /etc/rc.d/nfsd restart
 or
 # /etc/init.d/nfsd restart

Depending on your OS, you will have to start a daemon that will handle RPCSEC_GSS requests
on the server. Usually, it is called rpc.svcgssd. So if it was not already started, do so:

 # rpc.svcgssd

Server configuration is done. Proceed to client configuration.

NFS Client
Like NFS server, move or merge the nfs-client keytab (nfs-client.foobar.com) to /etc/krb5.keytab,
and set the proper rights onto it (owner: root, rights: readonly for owner, none for others).

The NFS client configuration resembles the one you traditionally use to mount NFS directories,
except that it requires an additional daemon for RPCSEC_GSS support, usually called rpc.gssd
(the client counterpart of rpc.svcgssd). Start it:

 # rpc.gssd

Now, you should be able to mount NFS shares with the krb5 security option. Test it:

 # mkdir /tmp/nfs_krb5_test
 # mount -t nfs -o sec=krb5 nfs-server.foobar.com:/exports/tmp /tmp/nfs_krb5_test

If, for some reason, the mount operation hangs, please consult the NFS troubleshooting section
below.

Since the NFS directory is mounted, you should connect to kdc-client as a normal user, and ask
for a TGT. Upon accessing the NFS share, you will get the nfs service ticket:

 # whoami
 frank
 # kinit Password for frank@FOOBAR.COM:
 # cd /tmp/nfs_krb5_test
 # klist
 Ticket cache: FILE:/tmp/krb5cc_1000
 Default principal: frank@FOOBAR.COM

 Valid starting Expires Service principal
 08/15/06 08:01:10 08/15/06 16:01:10 krbtgt/FOOBAR.COM@FOOBAR.COM
 renew until 08/16/06 08:01:08
 08/15/06 08:01:30 08/15/06 16:01:10 nfs/nfs-server.foobar.com@FOOBAR.COM
 renew until 08/16/06 08:01:08

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 42 of 62

Troubleshooting kerberized NFS
Using Kerberos with NFS (or any other GSS mechanisms) is quite difficult, part of it being that
using NFS with Kerberos is not that common (system administrators tend to rely heavily on
samba shares).

Please note that CITI is having a full FAQ concerning NFSv4 and AUTH_GSS. Although it
applies to NFSv4, most questions and answers do apply to NFSv3 too:
http://www.citi.umich.edu/projects/nfsv4/linux/faq/

1 - Read the logs.

That may be a stupid advice, but in this case, they prove to be helpful. Often, forgetting to just
start portmap may cause troubles. dmesg is also a good source of investigation. Even if the
message you get is cryptic, searching for it or posting it on a mailing list will often get you some
good explanations.

For the RPCSEC_GSS part (rpc.gssd and rpc.svcgssd), both daemon have the possibility to be
launched in verbose and debug modes, and stay in foreground.

 # rpc.gssd -vvv -r -f # On NFS client
 # rpc.svcgssd -vvv -r -f # On NFS server

That way, they will print some valuable information when initializing GSS security contexts.
Consult their man pages for more details.

2 - kdestroy does not destroy Kerberos NFS session under Linux!

Using kdestroy (as user) does not effectively destroy my Kerberos session for NFS. I can still
access my files, even without having the TGS!

Well known issue, due to GSSAPI token caching in kernel.

3 - Using kinit as root on nfs-client does not grant me access on the share. Why?

Again, check the CITI FAQ.

4 - Since I use NFS with AUTH_GSS, I can not ssh to hosts with ssh using my private
key anymore... What happened?

You are probably using ssh with RSA keys, and put the public key in your
~/.ssh/authorized_keys. However, since the share is not accessible until you get a TGS for it,
nfs-client can not read this file and therefore, grant you access.

To solve this issue, you should connect to nfs-client and use GSSAPI delegation mechanisms,
with:

 ssh -o GSSAPIAuthentication=yes -o GSSAPIDelegateCredentials=yes username@workstation

5 - I kept getting "RPC: Couldn't create auth handle (flavor 390003)" on the client

That means that the kernel does not support secure RPC gss_krb5 calls. Either you did not
compile in the support (under Linux), or the module associated to it is not loaded. To do so, try
to execute:

modprobe rpcsec_gss_krb5

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 43 of 62

Postgresql
PostgreSQL (pg) is one of the two most well-known open source DataBase Management System
(DBMS), the other one being MySQL.

Installing and configuring a full Postgresql station is out of the scope of this article. We will
concentrate on authentication to pg, and then focus exclusively on its GSSAPI -- Kerberos
support.

pg can use many types of authentication (and authorization) mechanisms. These are all
configured in the data/pg_hba.conf file, which should come with some useful informations into it.

Basically, your initial pg_hba.conf file looks similar to this:

pg_hba.conf

 # TYPE DATABASE USER CIDR-ADDRESS METHOD

 # "local" is for Unix domain socket connections only
 local all postgres ident sameuser
 local all all md5
 # IPv4 local connections:
 host all all 127.0.0.1/32 md5
 # IPv6 local connections:
 host all all ::1/128 md5

pg maintains internally its own list of users. pg_hba.conf controls who can make what on the
system, on a host basis.

From now on, we suppose that PostgreSQL is installed on a host called pg-server.foobar.com.

As always, we will first create the keytab file, necessary for pg to function properly with
Kerberos. Log in to the KDC, and use kadmin to connect to the administration shell. The service's
name for PostgreSQL is postgres:

 # kadmin.local
 # ank -randkey postgres/pg-server.foobar.com
 Principal "postgres/pg-server.foobar.com@FOOBAR.COM" created.

Export its keytab:

 # ktadd -k /tmp/postgresql.keytab postgres/pg-server.foobar.com
 Entry for principal postgres/pg-server.foobar.com with kvno 3, encryption type Triple DES cbc mode with
HMAC/sha1 added to keytab WRFILE:/tmp/postgresql.keytab.
 Entry for principal postgres/pg-server.foobar.com with kvno 3, encryption type DES cbc mode with CRC-32 added
to keytab WRFILE:/tmp/postgresql.keytab.

Exit kadmin shell, and copy the file /tmp/postgresql.keytab to host pg-server.foobar.com. On pg-
server, save it in any location you want, provided it is accessible by pg.

 # scp /tmp/postgresql.keytab \
 pg-server.foobar.com:/var/lib/postgresql/data/postgresql.keytab
 # rm /tmp/postgresql.keytab

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 44 of 62

Here, we decided to put it in the same directory as postgresql config files. After copy is done,
remove /tmp/postgresql.keytab (for security reasons).

Since the keytab contains the long term key of postgres service, change its owner and rights
accordingly. The keytab file must be readable by the owner under which postgresql is running,
traditionally pgsql.

So, on host pg-server.foobar.com:

 # chown postgres:postgres /var/lib/postgresql/data/postgresql.keytab
 # chmod 400 /var/lib/postgresql/data/postgresql.keytab

We must configure postgreql so that it knows where to look to find the keytab. Edit
/var/lib/postgresql/data/postgresql.conf, and search for the value of krb_server_keyfile. Put in the
path of the keytab:

postgresql.conf

 krb_server_keyfile = '/var/lib/postgresql/data/postgresql.keytab'

Save and close the file.

Now, we must instruct postgresql the conditions under which users must be identified through
Kerberos. Here, it merely depends on what you want to do. For this guide, we consider that
user frank must be identified through Kerberos, and can connect to any database from any host.

So we edit the file pg_hba.conf, and add the krb5 line accordingly:

pg_hba.conf

 # "local" is for Unix domain socket connections only
 local all postgres ident sameuser
 local all all md5
 # IPv4 local connections:
 host all frank 0.0.0.0/0 krb5
 host all all 127.0.0.1/32 md5
 # IPv6 local connections:
 host all all ::1/128 md5

Note

1: pg_hba.conf uses a "first match win" ruleset. So, the line concerning frank must be put
before the line matching all remaining users (the "all" parameter).

2: by default, postgresql is not configured to listen to TCP connections. To enable it, see
the Connection Settings section in /var/lib/postgresql/data/postgresql.conf.

Once finished, save and close the file and restart postgresql:

 # pg_ctl -D /var/lib/postgresql/data restart

Now, postgresql should be able to use Kerberos mechanisms to authenticate user frank.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 45 of 62

To check that krb5 authentication functions properly, get the TGT for frank, then proceed to
connection to database with psql:

 # kinit frank
 Password for frank@FOOBAR.COM:
 # psql -h pg-server.foobar.com template1 frank
 # template1>

Normally, psql will not ask you for any password. klist will return the TGS cached for accessing
postgres service:

 # klist
 Default principal: frank@FOOBAR.COM

 Valid starting Expires Service principal
 07/26/07 21:00:42 07/27/07 05:00:42 krbtgt/FOOBAR.COM@FOOBAR.COM
 renew until 07/27/07 21:00:41
 07/26/07 22:53:01 07/27/07 05:00:42 postgres/pg-server.foobar.com@FOOBAR.COM
 renew until 07/27/07 21:00:41

Note

Kerberos does not provide any form of security mechanism for TCP connections.
Kerberos assures only that the authentication process is trustworthy, and that the user is
the one he claims to be. Nothing more.

Here, the remaining TCP connection to PostgreSQL might not be encrypted; you will
have to use extra security standards (SSL/TLS is a good option there) to prevent any
kind of Man In the Middle attack.

Servers' redundancy
Our whole guide is only built around one machine, supporting one KDC. Since Kerberos
provides authentication to most services and users, it is a weak link in our network. A single
point of failure on our KDC means no one will be able to receive tickets until KDC is back on
line.

To avoid this, replication comes to mind. It is mainly used to copy the master's database to a
slave KDC, but can serve other purposes, like saving.

Kerberos protocol does not specify replication between multiple hosts. Being not standardized,
each implementation has its own ways of doing it.

The propagation is done through a secured encrypted channel, from master to slave ("push").
On the master, a snapshot of the database is done at a given time (the "dump"), and is sent to a
service running on the slave, which updates its database.

Clients libraries support secondary servers requests. That is, if one server at any given time
failed to respond to ticket delivering demands, clients will automatically try to contact another
server (for the same realm), providing you entered their addresses when configuring the client's
hosts (in /etc/krb5.conf).

However, please note that all administrative tasks will remain unavailable until the master is
back on line. Slaves KDC provide ticket delivering, but no kadmin interface (the Kerberos

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 46 of 62

administration server, kadmind, should not run on the slaves' KDCs). Key creation, revocation
and policy changes will not be possible when master KDC is down.

There are two ways of adding a Kerberos KDC to the client's list.

The simple way
In part 2 and 3, we made it directly by setting the kdc value to its FQDN, in /etc/krb5.conf. For
more than one server, we just specify multiple values for KDC, one per line:

/etc/krb5.conf

 [realms]
 FOOBAR.COM = {
 kdc = kdc.foobar.com
 kdc = kdc-slave1.foobar.com
 kdc = kdc-slave2.foobar.com

 admin_server = kdc.foobar.com
 }

So, if you did not configure your clients earlier with the slaves kdc names, you will have to do it
for each of your hosts.

The more technical way
You can register KDC servers right into DNS. Doing so will avoid the hassle of reconfiguring
the clients if you add or remove one KDC in a specified realm. However, it supposes that you
set up a DNS on your network (like named), and that you have the permission to modify it.

To use DNS records, we will have to use TXT and SRV.

TXT records is the realm associated to a zone of your DNS. It is not used by default; this is why
we always specify default_realm value in /etc/krb5.conf.

SRV records are a bit more complicated. They specify the service name, the service port type,
and eventually the priority, weight, contact port and hostname. Please refer to RFC 2052 for
more details.

For one KDC, the DNS for our foobar.com zone will look like this (ports are those defined by
default for a Kerberos 5 implementation):

 # Realm registration
 _kerberos IN TXT FOOBAR.COM

 # port 88, for KDC, Kerberos 5 -- we add tcp and udp
 _kerberos._udp IN SRV 01 00 88 kdc.foobar.com.
 _kerberos._tcp IN SRV 01 00 88 kdc.foobar.com.

 # port 749, for kadmind. tcp only.
 _kerberos-adm._tcp IN SRV 01 00 749 kdc.foobar.com.

 # port 464, used for kpasswd (kerberized passwd), on udp. Optional.
 _kpasswd._udp IN SRV 01 00 464 kdc.foobar.com.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 47 of 62

To register slave KDCs, add their respective SRV (remember, there should not be any kind of
kadmind running on slave KDCs):

 # port 88, for KDC slaves
 _kerberos._udp IN SRV 01 00 88 kdc-slave1.foobar.com.
 _kerberos._tcp IN SRV 01 00 88 kdc-slave1.foobar.com. ...

Save this zone, and restart DNS service.

Now that we have added some slave servers, we should ensure that they receive a copy of the
master's database. We will call this step the "Replication step", as we are merely transfering the
Kerberos database content from one host to another.

Bear in mind that redundancy only works when you have both components: multiple servers
and synchronized databases. We exposed how to have multiple servers; next, we are giving a
solution to keep all servers' databases in sync.

Servers' replication
There are multiple ways of doing servers' replication. Strictly speaking, nothing prevents you
from mirroring one server to many others. That is one possible solution, but not necessarily the
best one.

This part describes how to configure kprop, a tool used to replicate a Kerberos database from one
host to another. This process is called "Propagation".

Configuring the master
The KDC database must contain two "host" keys: one for the master (kdc.foobar.com), and one
for the slave (kdc-slave1.foobar.com). They are used for mutual authentication when
propagating the dump.

Connect to administrative interface on kdc.foobar.com and create those two keys:

 kadmin.local: ank -randkey host/kdc.foobar.com
 kadmin.local: ank -randkey host/kdc-slave1.foobar.com

Export the host entry of master KDC (default to /etc/krb5.keytab):

 # ktadd host/kdc.foobar.com

Set the right properly on krb5.keytab:

 # chown root:root /etc/krb5.keytab
 # chmod 400 /etc/krb5.keytab

Now, we will do the same, but this time for the slave KDC. Export the key for host/kdc-
slave1.foobar.com to a keytab, and move the file (via scp) onto the slave KDC kdc-
slave1.foobar.com:

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 48 of 62

 # ktadd -k /tmp/krb5.keytab host/kdc-slave1.foobar.com
 # scp /tmp/krb5.keytab root@kdc-slave1.foobar.com:/etc/krb5.conf
 # rm /tmp/krb5.keytab

Configuring the slave

Note

By default, the propagation is done on the entire content of the master's database. That is,
even special principals (like K/M@FOOBAR.COM) will be dumped and copied to the
slave KDC. Pay attention there: it means that configuration files, as also specific files (like
ACLs and stash file) must be copied to the slave host too.

Copying only a part of it will result in a bulky situation. If you forget to copy the stash
file for example, the KDC daemon on the slave host will not be able to access the
propagated database.

Before connecting to the slave, we will copy all minimum required files from the master
for the slave system to work. Initially, it concerns (adapt the paths in accordance to your
OS):

• krb5.conf (/etc/krb5.conf)

• kdc.conf (/etc/krb5kdc/kdc.conf, or found in krb5kdc local directory)

• kadm5.acl (/etc/krb5kdc/kadm5.acl, or found in krb5kdc local directory)

• stash file (/etc/krb5kdc/stash, or found in krb5kdc local directory)

Connect to the slave, kdc-slave1.foobar.com. Move the copied files into their appropriate
directories (exactly like on the master KDC).

We will now initialize the slave database. Caution: we will use kdb5_util, but without exporting
the stash file (-s argument), thus avoiding the obliteration of the one we just copied from master.
When asking for the database Master Password, type in anything you want. The whole
database will be erased upon the first propagation from master.

 # kdb5_util create
 Loading random data
 Initializing database '/var/lib/krb5kdc/principal' for realm 'FOOBAR.COM',
 master key name 'K/M@FOOBAR.COM'
 You will be prompted for the database Master Password.
 It is important that you NOT FORGET this password.
 Enter KDC database master key:
 Re-enter KDC database master key to verify:

The slave configuration is exactly the same as the master's one. Except that:

• it won't run an administrative instance of kadmind

• we must add a secondary file, namely kpropd.acl. It controls the principals from
which the slave machine will allow Kerberos dump updates.

This file typically resides in /var/lib/krb5kdc/kpropd.acl (the krb5kdc local directory).

Here, updates should only come from kdc.foobar.com. So create kpropd.acl accordingly:

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 49 of 62

 echo "host/kdc.foobar.com@FOOBAR.COM" > /var/lib/krb5kdc/kpropd.acl

Do not start slave KDC. Since we still do not have a copy of the master's database, the stash file
and the database master password of slave do not match.

Propagation
Connect to master KDC.

Before using kprop, we should get a dump of the master, and save the content to some file (in the
following example, /root/slave-trans):

 # kdb5_util dump /root/slave-trans

We should now use kprop to propagate this dump to the slave.

 # kprop -f /root/slave-trans kdc-slave1.foobar.com
 Database propagation to kdc-slave1.foobar.com: SUCCEEDED

You can use a crontab to make this operation on a hour/daily basis. The dump can also be used
as a save file. Once the operation succeeded, connect to slave and start its KDC.

Propagation failed?
If propagation failed with a loud "kprop: Connection refused in call to connect while opening
connection", it means that kprop did not manage to contact kpropd on the remote slave KDC.

This will occur if you set restrictive access rules with a firewall, or if kpropd did not start upon
connection.

The propagation is done through a tcp stream on port 754. Usually, kpropd is not a daemon
running on its own: it is started by inetd (or its equivalent xinetd). However, many systems do
not register kpropd as a service in their inetd database.

You can launch kpropd by two different means: either by starting it during boot up with the -S
argument (see kpropd(8) for details), or register kprop as a potential services to inetd.

To register kpropd, it depends on whether your are using inetd or its more sophisticated
equivalent xinetd.

First, edit /etc/services, and look for kprop service; the line should look like this:

/etc/services

 kprop 754/tcp

If you did not find it, please add it to the bottom of the file. Save and close.

inetd.conf

Now we should edit inetd.conf (see below for xinetd), and add this line:

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 50 of 62

/etc/inetd.conf

 kprop stream tcp nowait root /usr/sbin/kpropd kpropd

Please note that the path to executable may vary from one system to another. Save and close
inetd.conf, and restart inetd.

 # /etc/rc.d/inetd restart

xinetd.conf

All config file for xinetd resides in the /etc/xinetd.d directory. We must add the kprop config file,
so that xinetd knows its existence:

 # vi /etc/xinetd.d/kpropd

Create and edit the kpropd file:

/etc/xinetd.d/kpropd

 service kprop
 {
 socket_type = stream
 wait = no
 user = root
 server = /usr/sbin/kpropd
 only_from = 0.0.0.0 # Allow anybody to connect to it. Restrictions may apply here.
 log_on_success = PID HOST EXIT DURATION
 log_on_failure = PID HOST
 }

Save and close the file, and restart xinetd:

 # /etc/init.d/xinetd restart

You should now be able to propagate the dumps from master kdc.foobar.com to slave kdc-
slave.foobar.com.

Cross Realm Authentication
We managed to configure a KDC on a specific realm. But now, consider that our user frank
belongs to FOOBAR.COM, and he wishes to authenticate to a service found on another realm,
like EXAMPLE.COM.

Since EXAMPLE.COM has no way of deciphering the TGT from frank obtained from the KDC
of FOOBAR.COM, how can the KDC in EXAMPLE.COM know that frank is the user he claims
to be, as it does not have access to frank's key in FOOBAR.COM?

Here comes cross realm authentication into play. It comes in three flavors with Kerberos 5:
direct, hierarchical and non-hierarchical.

Direct cross realm authentication means that two realms, REALM1 and REALM2, will establish
directly their trust relationship, through key shares.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 51 of 62

Hierarchical cross realm authentication is more DNS-like. Suppose we have two realms:
FOOBAR.COM and SUBNET.FOOBAR.COM. Provided that KDCs controlling each realm
share keys to ensure trust relationship, users from FOOBAR.COM will be able to use services
offered by SUBNET.FOOBAR.COM (and reciprocally, if the relationship is bidirectional).

It resembles direct relationship in some way. The least common multiple being a network with
different subnets placed right under it, whereas for a direct relationship, there is not necessarily
a least common multiple between realms.

Non hierarchical cross realm authentication is a bit more complex. When the network is
growing, and neither a direct nor hierarchical relationship can be established, we have to
manually specify a "path" in /etc/krb5.conf that will instruct the applications how they could
obtain a particular service ticket for a distant realm.

A good example is the cohabitation of multiple KDCs, with some of them on realm
FOOBAR.COM and others on FOOBAR.NET. Since there is no direct evidence on how to
establish the relationships, it fits into the "non hierarchical" category.

Specifying individual keys in this case would be a painful task. Considering we must provide
two keys (for "bidirectional" trust) for each possible combinations of realms, having 6 KDCs will
theoretically require 6*5 = 30 keys.

Luckily, Kerberos 5 support transitive relationship. If REALM1 trusts REALM2 and REALM2
trusts REALM3, then REALM1 will "automatically" trust REALM3. Still, for complex setups,
you will have to manually specify capaths directives (cross authentication paths). Consult
krb5.conf man page to get explanations on how to write them.

For this how to, we will suppose that we have two realms: REALM1 and REALM2. Having
only two different realms in this example, the configuration process tends to be a direct cross
realm relationship. But the commands for hierarchical and non-hierarchical are exactly the same
(except that non-hierarchical relationship will require capaths directives in /etc/krb5.conf).

Theory
Cross realm authentication is based solely on keys, shared between two master KDCs.
Remember the krbtgt service we saw in Part 1 When we initialized the database
FOOBAR.COM? kdb5_util created a principal krbtgt/FOOBAR.COM@FOOBAR.COM, based
on this model:

service/instance@REALM

Since krbtgt is not a service which is "host" oriented but "realm" oriented, its instance part is a
Kerberos realm (that is why instance is written in uppercase).

This principal is used to deliver TGTs for principal's found on realm FOOBAR.COM.

Now, we have our user, frank@REALM1, who wishes to access a service found in realm
REALM2, like host/server1.realm2@REALM2.

Logically, frank should issue an authentication request to the KDC of REALM2, but in fact, he
can not: REALM2 does not store any principal related to frank. Since frank is not able to
identify himself on REALM2, the KDC from this realm will not deliver him the precious TGS to
access host/server1.realm2.

But frank is already identified to REALM1. So, he can make a request to his KDC, and ask him
for a special TGT that could identify him to REALM2. Since frank will need to authenticate to
an instance of REALM2 from his own realm REALM1, frank will ask a ticket for a new service,
this time for cross realm authentication. The principal for this service is:

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 52 of 62

krbtgt/REALM2@REALM1

Using this ticket, frank will now be able to present himself to REALM2, and get his TGS for
host/server1.realm2.

Note

The cross realm ticket is not delivered by the Authentication Server, as frank is already
identified. Exceptionally, it is the Ticket Granting Server that will serve the cross realm TGT.

This relationship is one-to-one: REALM2 trusts principal's from REALM1, not the other way
around. No user can get a cross realm TGT from REALM2 to get a TGS from REALM1, as we
do not have a:

krbtgt/REALM1@REALM2

at our disposal in REALM2.

For all that theory to work, we should now create those keys.

Configuration

We said that cross realm authentication is based on keys. As you saw, the tickets that are
firstly delivered are TGTs, and not TGS. Although the keys must be shared between two
different KDCs, we will not export them in keytabs, but rather keep them in the
databases; keytabs are mainly used for host based services.

Since Kerberos protects the database with a Master Key Password (contained in the stash
file), we can not simply export the keys through a dumpfile (with kdb5_util) and load it to
the other KDC. As the Master Key Passwords are not identical (we are not in a replication
situation!), exporting and importing will result in different keys on both hosts.

To ensure that the keys do correspond correctly from one host to another, we will use a
common password on both KDCs, and ensure that we are using the same algorithms and
key salts, in order to obtain the same hashes when generating the krbtgt keys from the
passwords. In the example below, we do not use key salts, to make things easier.

Choose two passwords, preferably different, and complicated ones. They will be used to
generate the keys necessary for the bidirectional trust relationship. We will refer to them as
password_one and password_two.

We are going to connect to kadmin interface for KDC on REALM1, and create two principals:

REALM1 trusts REALM2 principals: krbtgt/REALM1@REALM2, associated to <password_one>.
REALM2 trusts REALM1 principals: krbtgt/REALM2@REALM1, associated to <password_two>.

Connection:

 # kadmin.local

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 53 of 62

The following commands are just examples. You can choose whatever algorithms and key salts
you want, just remember to use exactly the same on the other KDC in order to generate the
same keys from the same passwords.

First principal:

 kadmin.local: ank -kvno 1 -e des3-hmac-sha1:normal -e aes256-cts:normal +requires_preauth
krbtgt/REALM1@REALM2
 WARNING: no policy specified for krbtgt/REALM1@REALM2; defaulting to no policy
 Enter password for principal "krbtgt/REALM1@REALM2": <enter password_one>
 Re-enter password for principal "krbtgt/REALM1@REALM2": <re-enter password_one>
 Principal "krbtgt/REALM1@REALM2" created.

Second principal:

 kadmin.local: ank -kvno 1 -e des3-hmac-sha1:normal -e aes256-cts:normal +requires_preauth
krbtgt/REALM2@REALM1
 WARNING: no policy specified for krbtgt/REALM2@REALM1; defaulting to no policy
 Enter password for principal "krbtgt/REALM2@REALM1": <enter password_two>
 Re-enter password for principal "krbtgt/REALM2@REALM1": <re-enter password_two>
 Principal "krbtgt/REALM2@REALM1" created.

Now, connect to the kadmin interface of REALM2, and enter the exact same commands.

Both principals are created, cross realm authentication may apply between those two realms.
We must also configure /etc/krb5.conf files, so that kerberized applications know which KDC to
contact for each realm:

On REALM1:

/etc/krb5.conf

 [libdefaults]
 default_realm = REALM1

 [realms]
 REALM1 = {
 kdc = kdc.realm1
 admin_server = kdc.realm1
 }
 REALM2 = {
 kdc = kdc.realm2
 }

 [domain_realm]
 .realm1 = REALM1
 realm1 = REALM1
 .realm2 = REALM2
 realm2 = REALM2
 ...

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 54 of 62

On REALM2:

/etc/krb5.conf

 [libdefaults]
 default_realm = REALM2

 [realms]
 REALM2 = {
 kdc = kdc.realm2
 admin_server = kdc.realm2
 }
 REALM1 = {
 kdc = kdc.realm1
 }

 [domain_realm]
 .realm2 = REALM2
 realm2 = REALM2
 .realm1 = REALM1
 realm1 = REALM1
 ...

If, for some reasons, cross realm authentication fail, check the logs.

"Deciphering errors" are mostly due to a wrong match between the shared keys (either the
hashes do not correspond, or the KVNOs are not equal) between REALM1 and REALM2.

Access refusal to Unix accounts (through ksu, or ssh) is often due to default_realm value
/etc/krb5.conf. Very often, the standard configuration only allow access to REALM1 accounts for
users from REALM1 (quite logical, you would say). To grant access to REALM1 accounts for
REALM2 users, you should edit the .k5login file accordingly. See ksu man pages for details about
it.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 55 of 62

Glossary

KDC—The Key Distribution Center(s):
Represents the main part of a Kerberos realm. It consists of three parts:

the Authentication Server (AS), responsible for authenticating users and issuing Ticket
Granting Tickets (TGT)

the Ticket Granting Server, responsible for checking a users identity in respect to a service and
issuing Ticket Granting Services (TGS)

a database, containing all the long term keys of all services and users of a Kerberos realm,
including the administrators of the Kerberos database. This database also contains some more
information associated to Kerberos accounts (creation dates, policies, expiration date, ...).

A KDC is usually found in a highly secured environnement, both physically and electronically.
Only trusted employees should have physical access to this machine. The KDC is traditionally a
machine dedicated solely to delivering Kerberos tickets, in order to minimize compromission
through other services it could offer (mail, web server, etc.)

KDCs contains always a master for his own domain, and optionally, slaves, if needed.

Tickets
Some kind of cached information, crypted or not, on a client's machine. It contains all the
information required for authentication. Frequently, it's stored as a file in a temporary
environnement (/tmp on Unix), or directly in memory.

Ticket Granting Ticket - TGT
The Ticket Granting Ticket. It's the ticket delivered by the Authentication Server on successful
identification, traditionally on first login or on request of a ticket renewal, and stored in memory
or in a file.

The TGT is used for SSO purposes, and is sent back each time the client needs to authenticate
himself to KDC.

Ticket Granting Service - TGS
The Ticket Granting Service. Not to be confused with Ticket Granting Server.

It's the ticket delivered by the Ticket Granting Server, on successful identification through a
TGT. This ticket is used when contacting a kerberized service, and provides the service's
daemon with all the requirements for authenticating the user.

Key table—keytab
A file containing the long term key associated with a service. Its content is a shared secret
between the KDC (which stores service's key in its database) and the service itself. It works
mainly in the same way as a password for an individual, albeit it is used by a service (ldap, ssh,
apache, nfs...)

For security reasons, this file should only be readable by the service's daemon itself.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 56 of 62

KVNO—Key version number
The key version number. It is a counter that increments each time a given key is changed in
KDC database, for one principal. It is used mainly as a way to distinguish multiple keys
associated with a specific principal, in case they are changed (password change, or key
modification for service).

Generally, the KVNO starts at 0 when the principal is first created in the database, and is
incremented by one each time the key changes, or is exported (in a keytab, for example).

Principal
This is a Kerberos term which is associated with an entity in the Kerberos realm. Basically, it is
the equivalent of the username for a Unix account, but with a wider meaning: it can represent
users, but also services or hosts.

A principal is separated into three main parts:

• a username or service name,

• an optional instance name (that allow different contexts for same user or service),

• realm name (a logical part of a network ruled by a set of KDCs).

username/instance@REALM

Username (or service name) and instance name are separted with a / , and the realm is
separated from the first block with an @. By convention, the realm name corresponds to the
DNS name in uppercase letters, to avoid confusion.

Although instances define a context and may be bound to a single user, from Kerberos point of
view, both instances are treated independently: frank@FOOBAR.COM and
frank/admin@FOOBAR.COM are two different principals.

Kerberized service
This is a program (slapd, sshd, nfsd...) or computer (host) which requires Kerberos as an
authentication authority.

GSSAPI
The GSSAPI (Generic Security Services -- Application Program Interface) is an application
programming interface used to wrap around security sevices functions, which tends to differ in
their implementations.

Being an IETF standard, it is mainly used as a solution to ease the integration of different
security systems in programs, providing a core set of functions that are implementation-
independant, and hiding the inherent complexities and differences of different protocols to
higher level applications.

Today, the dominant mechanism used through GSSAPI is Kerberos, as a way to overcome the
technical difficulties by incompatible Kerberos APIs being not standardized. In essence, the
GSSAPI is similar to Kerberos protocol: tickets are called tokens, and are used to create a mutual
security context.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 57 of 62

DES , 3DES, AES, ARCFOUR (RC4), ...
Those are the symmetric cryptography algorithms that are used by Kerberos to cipher and
decipher communications. DES is the older of the three, and is based on 56 bits keys. DES is
considered insecure today, and it is recommended to use the Triple DES algorithm (3 successive
DES operations -- 112 to 168 bits strong), or even better, AES, which is 128, 192, 256 bits strong.

RC4 is the algorithm used by Microsoft own Kerberos implementation (Active Directory), and is
commonly used by WEP. It is not recommended to use this algorithm today, as some of his
inherent flaws lead to infamous WEP security problems. Microsoft chose it for retro
compatibility reasons with NT.

Roughly (and abusively), to compare asymmetric and symmetric keys strength, a 128 bits
symmetric key is equivalent to a 3072 bits RSA (asymmetric) key.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 58 of 62

Troubleshooting
The troubleshooting guide has no intention of being a "once and for all" solution with Kerberos.
Please bear in mind that Kerberos is an extremely complicated protocol, and troubleshooting it
isn't easy.

You will find here a good share of the experiences of the author when he got problems with his
Kerberos realm, and how he solved them.

Since such a guide could benefit from all the tips and tricks you could have, feel free to
contribute to it. You could save quite a lot of time to others if you got some trivial/non trivial
solution to someone's problem.

Anyway, if you didn't find anything useful in it, remember: Mails and mailing lists are useful,
and google is still your best friend.

1 - I can't contact Kerberos KDC
First, check that krb5kdc is up and listening on ports 88 and 750. If yes, there may be quite a lot
of problems:

• firewall

• Improper configuration

For firewall, I can't help you much. Be sure to grant access to:

• ports 88 and 750 (tcp/udp -- for KDC. 88 is for Kerberos 5, and 750 is Kerberos 4),

• port 749 (tcp -- for kadmind),

• (optionally) port 464 (udp, for kpasswd).

To check this, a netstat -anp might help you. Pay attention to lines containing krb5kdc and
kadmind.

For improper configuration, double check your configuration files, server's and client's side.
This includes all the krb5kdc/* files for server, and krb5.conf for client.

2 - "Can't resolve hostname"
Perhaps the mostly found and the mostly annoying error with Kerberos.

For authentication, Kerberos uses hostname. When you write your conf files, be sure to always
indicate the Fully Qualified Domain Name (FQDN), and not a part of it, for server AND client.
Bad habbits tend to associate only the last part of the FQDN in the /etc/hosts file, after IP
address. That is not good. First, give IP address, then FQDN, then any alias you wish.

On the other hand, if you use a DNS, check that your client and server hostname resolve IP and
FQDN correctly. To do this, use these commands:

• host <IP>, in order to get the registered name for <IP>. If it doesn't return you the good
FQDN of your host, the DNS is misconfigured.

• host <FQDN>, which should give you the correct <IP> of your host back.

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 59 of 62

3 - Clock skew too great!
A very nice one from Kerberos too. Here, that is easy: client and server clocks aren't
syncrhonized, and have to much skew between them. Kerberos needs synchronised clocks in
order to thwart replay and avoid potential time attacks.

Solution: use NTP for synchronising clocks, or regularly check that the clocks on your machines
have not to much skew (3 min max). You shouldn't deactive clock checking, unless you know
what you are doing.

4 - It keeps telling me: "PREAUTH_REQUIRED" or
"NEEDED_PREAUTH"
It should. Preauthentication is a check flag added with version 5 of Kerberos, which avoids off
line brute force attacking on tickets (that could be possible in version 4). Preauthentication
should be in default principal flags (see the server configuration part), unless you wan't
compatibility with a Kerberos 4 server.

5 - Turning on Logs for Kerberos (libraries, administration and
KDC)
For debugging or troubleshooting, turning on logging is quite helpful, especially if you can
provide the logs when requesting help on mailing lists.

To turn logging on, add this section to /etc/krb5.conf (adapt the file paths to your likings):

/etc/krb5.conf

 [logging]
 default = FILE:/var/log/krb5.log
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmind.log

Be sure to turn it back off when finished, or add some sort of logrotation on those files
(especially for the KDC). On busy networks with lots of authentication, the logs can become
pretty heavy in just a few hours.

6 - KVNO mismatch (key version number mismatch)
Basically, each time you export a keytab for a service, the KVNO associated to each key is added
to the file.

During service's access request, the service must compare the KVNO and key found in its
keytab with the one used to generate the TGS. If there is a mismatch between one of the two, it
means that the service's keytab is not in sync with the KDC database. Thus, authentication to
the service is impossible, due to mismatch.

Solving this issue is easy: you have to update the service's keytab, by re-exporting it and
replacing the old one. That way, both key and KVNO will match properly upon access request.

7 - Merging (or editing) a keytab file
Merging or editing keytabs is done through the ktutil utility. Suppose we have two keytabs,
keytab1 and keytab2, each having their own set of keys, and we would like to merge the two

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 60 of 62

keytabs in one (or create a new keytab containing specific keys). The operation is done through
the ktutil shell, with rkt and write_kt commands, and optionally delent if you want to delete some
entities.

Example:

 # ktutil

Read content of keytab1:

 ktutil: rkt keytab1
 ktutil: list
 slot KVNO Principal
 ---- ---- ---
 1 3 <principal and key of keytab1>
 2 3 <principal and key of keytab1>

Now, we will read the content of keytab2:

 ktutil: rkt keytab2
 ktutil: list
 slot KVNO Principal
 ---- ---- ---
 1 3 <principal and key of keytab1>
 2 3 <principal and key of keytab1>
 3 2 <principal and key of keytab2>
 4 2 <principal and key of keytab2>

Save this content in a temporary keytab:

 ktutil: write_kt /tmp/krb5.keytab

This utility is used to duplicate and tweak keytab entries (as its name implies), and remove the
need of exporting the keys out of the KDC twice or more (simultaneously avoiding KVNO's
increment).

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 61 of 62

Footnotes
1 - BSD like distributions use a different system. They store passwords and accounting
information in the same file. While it does not strictly separate authentication from accounting,
principles are exactly the same.

2 - There are other mechanisms, based on asymmetric cryptography, which can provide users'
authentication: Public Key Infrastructure (PKI). As of today (in 2008), these systems are still
difficult to use, and not as widely supported as Kerberos is. Note that Kerberos can also take
advantage of public cryptography (for example, see Distributed Authentication in Kerberos
Using Public Key Cryptography), but it is not that common.

References
1. R. M. Needham and M. D. Schroeder, Using encryption for authentication in large networks of

computers, December 1978.

2. Kerberos V5 System Administrator's Guide

3. J. Garman, Kerberos - The definitive guide, O'Reilly, August 2003 - ISBN: 0-596-00403-6.

4. F. Ricciardi, The Kerberos protocol and its implementations, November 2006

5. K. Hornstein, Frequently Asked Questions about Kerberos, August 2000

6. A. Le Rouzic, Kerberized NFSV4 Setup Tutorial, June 2007

© 2008 by the MIT Kerberos Consortium Ver. July 23, 2008 Page 62 of 62

Copyright Notice, © 2008 by the MIT Kerberos Consortium

Export of software employing encryption from the United States of America may
require a specific license from the United States Government.

It is the responsibility of any person or organization contemplating export to obtain
such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation, and
that the name of MIT not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission. Furthermore if you modify
this software you must label your software as modified software and not distribute it in
such a fashion that it might be confused with the original

MIT software. MIT makes no representations about the suitability of this software for
any purpose. It is provided “as is” without express or implied warranty.

