MIT Kerberos Consortium

Kerberos on the Web: Update

Thomas Hardjono
March 30, 2009
MIT-KC Strategic Pillars

• We propose to make steady progress in the following areas:

1. Kerberos on the Web
2. Kerberos on Mobile Devices
3. Maintaining and Securing Kerberos
4. Vendor Independence
Why Kerberos on the Web

• Why Kerb-Web:
 – Web-services core to future Internet economy
 – Strong Kerberos presence in SMB to Large Enterprises
 • Expand enterprise Kerberos infrastructure to support web-services transactions

• Benefits:
 – Re-use enterprise investment
 – Enterprise-grade security for consumer transactions
Kerb-Web Problem Space

- Broadly a 3-sided problem space:
 I. Client to Web-Server/App (IdP) authentication
 II. Authenticated service request to SP
 - aka “Web-SSO”
 III. IdP-to-SP trust (key) establishment

- Kerberos and Certificates:
 - Both Kerberos and a certificate infrastructure are foundation for web-services security
 - Certificate support relevant for Kerberos inter-domain/realm trust establishment
Kerb-Web Problem Space

1. User initiates a session with a Browser or Client Application (Kerb-enabled).
2. The application requests a ticket from the Identity Server (Kerb-enabled).
3. The Identity Provider (IdP) issues a ticket to the Kerberos Client.
4. The Web-Server (Kerb-enabled) requests a ticket from the Identity Server (Kerb-enabled).

Front Channel Security

Back Channel Security

Identity Server (Kerb-enabled)
KDC
Identity Provider (IdP)
Services Provider (SP)
I. Client/User Authentication

• Goal: User on Kerb-enabled client performs authentication against IdP
 – Kerberized IdP
 • Eg. web-server/app retrofitted with a KDC.
 – Kerberos messages within HTTP and/or SSL/TLS (or other suitable transport)
 – Pre-authentication mechanisms (FAST)
 – Provide leap in security quality compared to current web form+password.
I. Client/User Authentication (cont)

• Some key issues:
 – No clear leading standard
 • GSS-TLS, PKU2U, etc. etc.
 • Desire minimal (or no) change to apps & browsers
 – Support in current browser (chicken & egg)
 • Browser vendors reluctant if no server-side support

• What we can do:
 – Influence standardization efforts
 – Identify use-cases & develop server support
 • Web-SSO use case (e.g. Shibboleth)
 – Outreach to browser vendors
II. Service request to SP

- Goal: use Kerberos service ticket to obtain web-services
 - Wrap standard Kerberos ticket in XML-based format
 - WS-Security token, Kerb-in-SAML or SAML-in-Kerb
 - Claims
 - Interoperability with identity management
 - Support Client-to-SP mutual authentication
 - When required by SP
 - Support automated service-requests
 - No human present
II. Service request to SP (cont)

- Some issues:
 - WSS Token profile v1.1 covers AP_REQ only
 - Designed for WS-S* over SOAP
 - Need to address SAML-based SPs and IdPs

- What we can do:
 - Update WS-S Kerb Token profile spec
 - Develop spec for SAML equivalent
 - Investigate interoperability with identity standards/frameworks
 - Liberty, Shibboleth, CardSpace/Geneva, etc
III. IdP-to-SP Trust Establishment

• Goal:
 – IdP/kdc and SP/kdc to share keying material

• Some issues:
 – The “Back Channel” problem area
 – Automated KDC-to-KDC key establishment

• What we can do:
 – Investigate Kerberizing CAs or adding X509 certificate capability to KDC
 • KX509 or similar
 – Implement & promote PKCROSS or similar.
Conclusions

• Great interest in Kerb-Web notion:
 – Recognized need to bring Kerberos to the web

• Seek support from MIT-KC Members:
 – Standards front
 – Architectural inputs
 – Code contributions
 – Engineering resources
The MIT Kerberos Consortium
77 Massachusetts Avenue
W92-152
Cambridge, MA 02139 USA

Tel: 617.715.2451
Fax: 617.258.3976

Thomas Hardjono
Strategic Advisor

Web: www.kerberos.org

MIT Kerberos Consortium
Strategic Advisor
Thomas Hardjono (hardjono@mit.edu)
781-729-9559